桦木酶解磨木木质素分子结构及其拉伸力学性能研究
Molecular Structure and Tensile Mechanical Properties of Birch Enzymatic Lignin
- 2024年38卷第4期 页码:36-43
DOI: 10.12326/j.2096-9694.2024029
移动端阅览
浏览全部资源
扫码关注微信
木质材料科学与应用教育部重点实验室(北京林业大学),北京 100083
纸质出版日期: 2024-07-30 ,
移动端阅览
周博鑫,戴璐,漆楚生.桦木酶解磨木木质素分子结构及其拉伸力学性能研究[J].木材科学与技术,2024,38(04):36-43.
ZHOU Boxin,DAI Lu,QI Chusheng.Molecular Structure and Tensile Mechanical Properties of Birch Enzymatic Lignin[J].Chinese Journal of Wood Science and Technology,2024,38(04):36-43.
为弥补木材类原位木质素拉伸力学性能相关数据的缺失,研究采用球磨、弱碱预润胀以及酶解相结合的方法提取三种桦木(
Betula platyphylla
)酶解磨木木质素,分别为:双酶解木质素(dual-enzyme lignin,DEL)、预润胀三酶解木质素(alkaline-treated triple-enzyme lignin,ATEL)和双预润胀双酶解木质素(dual-alkaline-treated dual-enzyme lignin,ADEL),并测试木质素的纯度、分子结构、抗拉强度、弹性模量、泊松比和剪切模量。结果表明:DEL、ATEL、ADEL的纯度分别为48.2%、99.29%、97.79%。ATEL和ADEL对桦木原位木质素的化学结构破坏较少,其表现出阔叶树材木质素典型的红外光谱特征,具有代表性连接键β-O-4键和β-β键,可以视为原位木质素。在含水率为5%的条件下,DEL、ATEL和ADEL的抗拉强度分别为17.14、5.38和5.62 MPa,弹性模量分别为7.97、6.36和6.23 GPa,泊松比分别为0.31、0.34和0.34,计算的剪切模量分别为3.04、2.39和2.33 GPa。DEL中存在大量纤维素和半纤维素,其拉伸力学性能偏高,ATEL和ADEL测试数据可用于评估桦木原位木质素的拉伸力学性能。
To compensate for the lack of tensile strength-related data on wood pseudo in-situ lignin
this study combines ball milling
weak alkaline pretreatment
and enzymatic methods to extract three types of birch (
Betula platyphylla
) wood lignin: dual-enzyme lignin (DEL)
alkaline-treated triple-enzyme lignin (ATEL)
and dual-alkaline-treated dual-enzyme lignin (ADEL). Subsequently
the molecular purity
molecular structure
tensile strength
elastic modulus
Poisson' s ratio
and shear modulus of the isolated lignin were tested. The results show that the purities of DEL
ATEL
and ADEL were 48.2%
99.29%
and 97.79%
respectively. ATEL and ADEL cause minimal chemical degradation of in-situ lignin in birch
exhibiting typical infrared spectroscopic features of hardwood lignin
including representative linkage types such as β-O-4 and β-β bonds
making them suitable for use as pseudo in-situ lignin. At 5% water content
the tensile strengths of DEL
ATEL
and ADEL were 17.14
5.38
and 5.62 MPa respectively; the elastic modulus were 7.97
6.36
and 6.23 GPa respectively; the Poisson' s ratios were 0.31
0.34
and 0.34 respectively; the calculated shear modulus were 3.04
2.39
and 2.33 GPa respectively. DEL contains a large amount of cellulose and hemicellulose
resulting
in higher tensile mechanical properties. ATEL and ADEL test data can be used to evaluate the tensile mechanical properties of in-situ birch lignin.
桦木酶解磨木木质素类原位木质素拉伸力学性能
birchenzymatic ligninpseudo in-situ lignintensile mechanical properties
WALKER J C F. Primary wood processing[M]. Dordrecht: Springer, 2006: 57.
卢芸. 木材超分子科学:科学意义及展望[J]. 木材科学与技术, 2022, 36(2):1-10.
LU Y. Wood supramolecular science:scientific significance and prospects[J]. Chinese Journal of Wood Science and Technology, 2022, 36(2):1-10.
王东, 林兰英, 傅峰. 木材多尺度结构差异对其破坏影响的研究进展[J]. 林业科学, 2020, 56(8): 141-147.
WANG D, LIN L Y, FU F. The effects of multiscale structure differences on wood fracture-a review[J]. Scientia Silvae Sinicae, 2020, 56(8): 141-147.
LOU Y H, SUN X Y, YU Y Y, et al. One-pot protolignin extraction by targeted unlocking lignin-carbohydrate esters via nucleophilic addition-elimination strategy[J]. Research, 2023, 6: 69.
WANG H M, WANG B, WEN J L, et al. Structural characteristics of lignin macromolecules from different Eucalyptus species[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11618-11627.
BALAKSHIN M, CAPANEMA E A, ZHU X H, et al. Spruce milled wood lignin: linear, branched or cross-linked?[J]. Green Chemistry, 2020, 22(13): 3985-4001.
WANG J Y, HOU S Y, SHEN Z L, et al. Thermal characteristics and simulation of enzymatic lignin isolated from Chinese fir and birch[J]. Forests, 2022, 13(6): 914.
王汉敏. 速生桉木/杨木木质素结构解译与PBAT复合材料制备研究[D]. 北京: 北京林业大学, 2021.
文甲龙. 生物质木质素结构解析及其预处理解离机制研究[D]: 北京: 北京林业大学, 2014.
周博鑫, 沈姿伶, 江京辉, 等. 木质素分离及主要物理和力学性能的研究进展[J]. 材料工程, 2024, 52(2): 122-134.
ZHOU B X, SHEN Z L, JIANG J H, et al. Research progress in isolation,main physical and mechanical properties of wood lignin[J]. Journal of Materials Engineering, 2024, 52(2): 122-134.
TAKEICHI Y, YOSHIDA M, KITANO K, et al. In situ measurement of tensile elastic moduli of individual component polymers with a 3D assembly mode in wood cell walls[J]. Journal of Wood Science, 2013, 59(2): 104-111.
BADER T K, HOFSTETTER K, HELLMICH C, et al. Poromechanical scale transitions of failure stresses in wood: from the lignin to the spruce level[J]. ZAMM - Journal of Applied Mathematics and Mechanics, 2010, 90(10-11): 750-767.
COUSINS W J, ARMSTRONG R W, ROBINSON W H. Young’s modulus of lignin from a continuous indentation test[J]. Journal of Materials Science, 1975, 10(10): 1655-1658.
COUSINS W J. Elasticity of isolated lignin: young’s modulus by a continuous indentation method[J]. New Zealand Journal of Forestry Science, 1977, 7(1): 107-112.
COUSINS W J. Elastic modulus of lignin as related to moisture content[J]. Wood Science and Technology, 1976, 10(1): 9-17.
袁同琦. 三倍体毛白杨组分定量表征及均相改性研究[D]: 北京: 北京林业大学, 2012.
ZHAO X B, ZHANG L H, LIU D H. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(4): 465-482.
ZHAO X B, ZHANG L H , LIU D H. Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(5): 561-579.
CHEN T Y, WANG B, WU Y Y, et al. Structural variations of lignin macromolecule from different growth years of Triploid of Populus tomentosa Carr.[J]. International Journal of Biological Macromolecules, 2017, 101: 747-757.
赵保成. 巨尾桉细胞壁木质素及木质素-碳水化合物复合体(LCC)结构解析[D]. 北京: 北京林业大学, 2018.
岳孔, 陆栋, 宋学松. 利用傅里叶变换红外光谱分析高温改性对杨木强度等级的影响[J]. 光谱学与光谱分析, 2023, 43(3): 848-853.
YUE K, LU D, SONG X S. Influence of thermal modification on poplar strength class by Fourier infrared spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 848-853.
赵阅书, 薛晓明, 宋小娇, 等. 6种阔叶树材红外光谱特征的比较[J]. 林业工程学报, 2019, 4(5): 40-45.
ZHAO Y S, XUE X M, SONG X J, et al. Comparison and analysis of FTIR spectra for six broad leaved wood species[J]. Journal of Forestry Engineering, 2019, 4(5): 40-45.
SANNIGRAHI P, RAGAUSKAS A J, TUSKAN G A. Poplar as a feedstock for biofuels: a review of compositional characteristics[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(2): 209-226.
Martínez A T, Rencoret J, Marques G, et al. Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study[J]. Phytochemistry, 2008, 69(16): 2831-2843.
裴继诚, 平清伟, 唐爱民, 等. 《植物纤维化学》[M]. 4版. 北京: 中国轻工业出版社, 2012: 102.
张双燕, 费本华, 余雁, 等. 木质素含量对木材单根纤维拉伸性能的影响[J]. 北京林业大学学报, 2012, 34(1): 131-134.
ZHANG S Y, FEI B H, YU Y, et al. Influence of lignin content on tensile properties of single wood fiber[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
NISHINO T, TAKANO K, NAKAMAE K. Elastic modulus of the crystalline regions of cellulose polymorphs[J]. Journal of Polymer Science. Part B: Polymer Physics, 1995, 33(11): 1647-1651.
COUSINS W J. Young’s modulus of hemicellulose as related to moisture content[J]. Wood Science and Technology, 1978, 12(3): 161-167.
MALEK S, GIBSON L J. Multi-scale modelling of elastic properties of balsa[J]. International Journal of Solids and Structures, 2017, 113: 118-131.
相关作者
相关机构
微信公众号