密度对稻壳/聚氯乙烯发泡复合材料尺寸稳定性及力学性能的影响
Effect of Density on the Dimensional Stability and Mechanical Properties of Rice Husk/Polyvinyl Chloride Foamed Composite Materials
- 2024年38卷第3期 页码:56-63
DOI: 10.12326/j.2096-9694.2024021
扫 描 看 全 文
浏览全部资源
扫码关注微信
1.华南农业大学生物基材料与能源教育部重点实验室,广东广州 510642
2.华南农业大学生物质工程研究院;农业农村部能源植物资源与利用重点实验室,广东广州 510642
3.佛山市顺德区锡山家居科技有限公司,广东佛山 528300
纸质出版日期: 2024-05-30 ,
扫 描 看 全 文
邢志栋,徐俊杰,欧荣贤等.密度对稻壳/聚氯乙烯发泡复合材料尺寸稳定性及力学性能的影响[J].木材科学与技术,2024,38(03):56-63.
XING Zhidong,XU Junjie,OU Rongxian,et al.Effect of Density on the Dimensional Stability and Mechanical Properties of Rice Husk/Polyvinyl Chloride Foamed Composite Materials[J].Chinese Journal of Wood Science and Technology,2024,38(03):56-63.
针对传统木塑复合材料(wood plastic composites,WPCs)密度大、尺寸稳定性差等问题,以稻壳和聚氯乙烯(polyvinyl chloride,PVC)为原料制备三种密度的稻壳/聚氯乙烯发泡复合材料(rice husk/polyvinyl chloride foamed composites,RHPC),分别标记为RHPC-I、RHPC-II、RHPC-III,探究密度变化对RHPC性能的影响。结果显示:随着发泡程度的增加及密度的减小,RHPC的泡孔均匀程度有所降低。RHPC的线性热膨胀系数(coefficient of linear thermal expansion,CLTE)及吸水膨胀率均逐渐升高,且长度、宽度和厚度三个方向上的尺寸变化率均表现出各向异性;不同湿度和温度作用下的尺寸变化率表明湿度对RHPC尺寸的影响大于温度。RHPC-I、RHPC-II、RHPC-III的弯曲强度、弯曲模量和抗蠕变性能呈下降趋势;RHPC-II由于均匀的泡孔结构呈现出最高的冲击强度和比冲击强度,分别为14.3 kJ/m
2
和19.9(kJ·m
-2
)/(g·cm
-3
)。本研究为轻质高强WPCs的开发和拓宽其应用领域提供指导。
This study investigated the effect of density variations on the performance of rice husk/polyvinyl chloride (PVC) foamed composite materials (RHPC) to address the challenges of high density and poor dimensional stability in traditional un-foamed wood plastic composites (WPCs). Three distinct densities of RHPC were fabricated using rice husk and PVC. The results revealed that as the foaming degree increases
the density and the uniformity of the cell pores decrease respectively. Notably
the coefficient of linear thermal expansion (CLTE) and water absorption expansion rate of the RHPC progressively increased from RHPC-I to RHPC-III
exhibiting anisotropy in dimensional changes across length
width
and thickness directions. Further analysis indicated that humidity exerted a greater effect on the dimensional stability of RHPC than the temperature. Additionally
a decrement in the bending strength
bending modulus
and creep resistance was observed from RHPC-I to RHPC-III. However
RHPC-II exhibited the highest impact strength of 14.3 kJ/m
2
and specific impact strength of 19.9 (kJ·m
-2
)/(g·cm
-3
)
which was attributed to its uniform cell structure. This
research provides valuable insights for developing lightweight-high-strength WPCs and expanding its potential applications.
稻壳/聚氯乙烯发泡复合材料发泡力学性能尺寸稳定性蠕变
rice husk/polyvinyl chloride foamed composites (RHPC)foamingmechanical propertiesdimensional stabilitycreep
MOHANTY A K, VIVEKANANDHAN S, PIN J M, et al. Composites from renewable and sustainable resources: challenges and innovations[J]. Science, 2018, 362(6414): 536-542.
王伟宏, 王晶晶, 黄海兵, 等. 纤维粒径对木塑复合材料抗老化性能的影响[J]. 高分子材料科学与工程, 2014, 30(5): 92-97.
WANG W H, WANG J J, HUANG H B, et al. Effects of wood fiber size on properties of wood fiber/HDPE composites after aging[J]. Polymer Materials Science & Engineering, 2014, 30(5): 92-97.
ELSHEIKH A H, PANCHAL H, SHANMUGAN S, et al. Recent progresses in wood-plastic composites: pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment[J]. Cleaner Engineering and Technology, 2022, 8: 100450.
郝笑龙, 周海洋, 孙理超, 等. 共挤出成型木塑复合材料研究进展与应用[J]. 林业工程学报, 2021, 6(5): 27-38.
HAO X L, ZHOU H Y, SUN L C, et al. Research progress and application of co-extruded wood plastic composites[J]. Journal of Forestry Engineering, 2021, 6(5): 27-38.
王清文, 易欣, 沈静. 木塑复合材料在家具制造领域的发展机遇[J]. 林业工程学报, 2016, 1(3): 1-8.
WANG Q W, YI X, SHEN J. Tailoring wood-plastic composites for furniture production: possibilities and opportunities[J]. Journal of Forestry Engineering, 2016, 1(3): 1-8.
易欣, 牛征北, 孙理超, 等. 基于场景化设计方法的木塑复合材料制品应用分析[J]. 木材科学与技术, 2021, 35(4): 64-68, 79.
YI X, NIU Z B, SUN L C, et al. Application analysis of wood-plastic composite products based on the scenario-based design method[J]. Chinese Journal of Wood Science and Technology, 2021, 35(4): 64-68, 79.
PETCHWATTANA N, COVAVISARUCH S. Influences of particle sizes and contents of chemical blowing agents on foaming wood plastic composites prepared from poly(vinyl chloride) and rice hull[J]. Materials & Design, 2011, 32(5): 2844-2850.
徐俊杰, 郝笑龙, 周海洋, 等. 超高填充聚丙烯基木塑复合材料高低温性能[J]. 复合材料学报, 2021, 38(12): 4106-4122.
XU J J, HAO X L, ZHOU H Y, et al. High-and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4106-4122.
XU J J, HAO X L, TANG W, et al. Mechanical properties, morphology, and creep resistance of ultra-highly filled bamboo fiber/polypropylene composites: effects of filler content and melt flow index of polypropylene[J]. Construction and Building Materials, 2021, 310: 125289.
SUN J M, ZHAO Z L, PANG Y, et al. The facile and efficient fabrication of rice husk/poly (lactic acid) foam composites by coordinated the interface combination and bubble hole structure[J]. International Journal of Biological Macromolecules, 2023, 234: 123734.
WANG B W, QI Z Y, CHEN X J, et al. Preparation and mechanism of lightweight wood fiber/poly(lactic acid) composites[J]. International Journal of Biological Macromolecules, 2022, 217: 792-802.
ZIMMERMANN M V G, TURELLA T C, SANTANA R M C, et al. The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites[J]. Materials & Design, 2014, 57: 660-666.
CHOE H, SUNG G, KIM J H. Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams[J]. Composites Science and Technology, 2018, 156: 19-27.
FARUK O, BLEDZKI A K, MATUANA L M. Microcellular foamed wood-plastic composites by different processes: a review[J]. Macromolecular Materials and Engineering, 2007, 292(2): 113-127.
WANG S W, XUE P, ZHANG W X, et al. Effect of material properties on the foaming behaviors of PP-based wood polymer composites prepared with the application of spherical cavity mixer[J]. Polymers, 2021, 13(18): 3179.
KORD B, VARSHOEI A, CHAMANY V. Influence of chemical foaming agent on the physical, mechanical, and morphological properties of HDPE/wood flour/nanoclay composites[J]. Journal of Reinforced Plastics and Composites, 2011, 30(13): 1115-1124.
ZHANG Z X, GAO C, XIN Z X, et al. Effects of extruder parameters and silica on physico-mechanical and foaming properties of PP/wood-fiber composites[J]. Composites Part B, 2012, 43(4): 2047-2057.
WANG S W, XUE P, JIA M Y, et al. Extrusion foaming behavior of wood plastic composites based on PP/POE blends[J]. Materials Research Express, 2019, 6(11): 115345.
Petchwattana N, Covavisaruch S, Pitidhammabhorn D. Influences of water absorption on the properties of foamed poly(vinyl chloride)/rice hull composites[J]. Journal of Polymer Research, 2013, 20(6): 172.
ZHOU H Y, LI W J, HAO X L, et al. Recycling end-of-life WPC products into ultra-high-filled, high-performance wood fiber/polyethylene composites: a sustainable strategy for clean and cyclic processing in the WPC industry[J]. Journal of Materials Research and Technology, 2022, 18: 1-14.
Kaboorani A. Characterizing water sorption and diffusion properties of wood/plastic composites as a function of formulation design[J]. Construction and Building Materials, 2017, 136: 164-172.
丁国军, 张维芳. 改性聚氯乙烯发泡材料研究进展[J]. 聚氯乙烯, 2022, 50(11): 9-12, 19.
DING G J, ZHANG W F. Research progress of modified PVC foam materials[J]. Polyvinyl Chloride, 2022, 50(11): 9-12, 19.
HAO X L, ZHOU H Y, MU B S, et al. Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites[J]. Composites Part B: Engineering, 2020, 185: 107778.
LI X Z, SHA A M, JIAO W X, et al. Fractional derivative Burgers models describing dynamic viscoelastic properties of asphalt binders[J]. Construction and Building Materials, 2023, 408: 133552.
相关作者
相关机构
微信公众号