杉木层状压缩的形成及其密度分布特征
Sandwich Compression Formation and Density Distribution in Chinese Fir (
Cunninghamia lanceolata ) Wood- 2024年38卷第3期 页码:11-20
DOI: 10.12326/j.2096-9694.2023198
扫 描 看 全 文
浏览全部资源
扫码关注微信
1.中国林业科学研究院木材工业研究所;国家林业和草原局木材科学与技术重点实验室,北京 100091
2.久盛地板有限公司,浙江南浔 313009
3.国际竹藤中心;国家林业和草原局竹藤科学与技术重点实验室,北京 100102
纸质出版日期: 2024-05-30 ,
扫 描 看 全 文
李晓玲,黄荣凤,何啸宇等.杉木层状压缩的形成及其密度分布特征[J].木材科学与技术,2024,38(03):11-20.
LI Xiaoling,HUANG Rongfeng,HE Xiaoyu,et al.Sandwich Compression Formation and Density Distribution in Chinese Fir (Cunninghamia lanceolata) Wood[J].Chinese Journal of Wood Science and Technology,2024,38(03):11-20.
实木层状压缩技术是以实体木材的定向定位压缩为目标,以最小的材积损耗,最大限度地提高木材力学性能的一种新型木材压缩方法。通过水热分布调控以及外力加载的协同作用,在调控压缩层的形成位置、厚度和多层压缩的基础上,分析压缩木材密度分布特征,研究层状压缩技术对于人工林杉木(
Cunninghamia lanceolata
)的适用性及其层状压缩形成的特点。结果表明:预热时间控制在0.5~30 min之间时,获得压缩层位置不同的层状压缩杉木。随着预热时间的增加,压缩层由表层逐渐向中心(厚度方向)移动,压缩层密度达到0.583 g/cm
3
及以上;通过调控压缩量,获得压缩层厚度为3.00~8.07 mm的4种厚度的表层压缩杉木,压缩层密度提高率比木材整体密度提高率平均高28.7%;将表层压缩和中心层压缩工艺并用,实现形成3个压缩层的多层压缩。扫描电镜观察结果表明,无论压缩层形成于表层还是中心层,压缩层与未压缩层界线出现在早材区域或早晚材交界处,压缩层的早材细胞发生细胞壁屈曲变形,至细胞腔几乎完全消失,而晚材细胞壁及细胞腔仅发生微变形或不变形。依据压缩前后木材密度分布曲线及特征值计算结果,杉木压缩层部位的早材密度提高率最大值可以达到210.6%。
Wood sandwich compression is an advanced technology of compressing wood layers through controlling the position
thickness
and the number of the compressed layers to achieve mechanical property enhancement. By regulating the distribution of temperature and moisture in Chinese fir wood under the desired pressure
the positions and thickness of compressed layers were managed in this study. Furthermore
density distribution in the compressed Chinese fir wood was analyzed to investigate the feasibility of sandwich compression technology to plantation Chinese fir wood and to clearly understand the formation mechanism. The results indicated that when the preheating time ranged from 0.5 to 30 minutes
Chinese fir wood was sandwich compressed with various positions of compressed layers. As the preheating time extended
compressed layers moved from wood surfaces into center and the compressed layer's density exceeded 0.583 g/cm³. By changing the compressing rate and thickness of wood specimen
four types of surface compressed wood with a compression layer thicknesses' range between 3.00~8.07 mm were obtained. The average density of the compressed layer was 28.7% higher than that of the original wood. Combining the technologies for surface compression and centre compression
three distinct compressed layers were formed in the sandwich compressed wood. It was also found that the boundary between the compressed layers and uncompressed layers appeared in the earlywood and the boundary between earlywood and latewood
regardless that compression occurred on wood surface or inside wood. Remarkably
the earlywood cells in the compressed layer underwent significant distortion
leading to the disappearance of almost all cell cavities. On the other hand
latewood cells exhibited little deformation or even remained intact. Based on the density profiles and the calculated characteristic values before and after compression
the maximum density of the compressed earlywood was 210.6% higher than that of the corresponding uncompressed earlywood.
人工林杉木层状压缩密度分布压缩层位置压缩层厚度早晚材细胞壁屈曲变形
Chinese fir plantationsandwich compressiondensity distributionposition of compressed layersthickness of compressed layersearlywood and latewoodcell wall distortion
NORIMOTO M. Large compressive deformation in wood[J]. Mokuzai Gakkaishi, 1993, 39(8): 867-874.
李坚, 吴玉章, 马岩, 等. 功能性木材[M]. 北京: 科学出版社, 2011.
黄荣凤. 实木层状压缩技术研究[M]. 北京: 科学出版社, 2023.
INOUE M, HAMAGUCHI T, MOROOKA T, et al. Fixation of compressive deformation of wood by wet heating under atmospheric pressure[J]. Mokuzai Gakkaishi, 2000, 46(4): 298-304.
INOUE M, MOROOKA T, ROWELL R M, et al. Mechanism of partial fixation of compressed wood based on a matrix non-softening method[J]. Wood Material Science and Engineering, 2008, 3(3/4): 126-130.
UDAKA E, FURUNO T. Heat compression of sugi (Cryptomeria japonica)[J]. Mokuzai Gakkaishi, 1998, 44(3): 218-222.
UDAKA E, FURUNO T, INOUE M. Relationship between the set recovery of compressive deformation and the moisture in wood specimens using a closed heating system[J]. Mokuzai Gakkaishi, 2000, 46(2): 144-148.
UDAKA E, FURUNO T. Change of crystalline structure of compressed wood by treatment with a closed heating system [J]. Mokuzai Gakkaishi, 2003, 49(1): 1-6.
足立幸司, 井上雅文. 2006. 木材の横圧縮加工技術[J]. 木材工業, 61(11): 510-512.
KITAMORI A, JUNG K, MORI T, et al. Mechanical properties of compressed wood in accordance with the compression ratio[J]. Mokuzai Gakkaisi, 2010, 56(2): 67-78.
李馨然, 林经康, 安昕, 等. 热压工艺参数对杉木压缩木回复率与力学性能的影响[J]. 林业工程学报, 2023, 8(5): 37-45.
LI X R, LIN J K, AN X, et al. Effect of hot-pressing parameters on recovery rate and mechanical properties of Chinese fir compressed wood[J]. Journal of Forestry Engineering, 2023, 8(5): 37-45.
王军锋, 宋恋环, 黄腾华, 等. 密实化工艺对杉木木材力学性能影响规律[J]. 林产工业, 2023, 60(9): 12-17.
WANG J F, SONG L H, HUANG T H, et al. Effect of densification process on mechanical properties of Chinese fir wood[J]. China Forest Products Industry, 2023, 60(9): 12-17.
黄荣凤, 黄琼涛, 黄彦慧, 等. 表层微压缩和加压热处理实木地板基材的剖面密度分布和尺寸稳定性[J]. 木材工业, 2019, 33(2): 6-10.
HUANG R F, HUANG Q T, HUANG Y H, et al. Density profile and dimensional stability of solid wood floor substrates treated with light compression and pressurized steam[J]. China Wood Industry, 2019, 33(2): 6-10.
李任, 黄荣凤, 常建民, 等. 预热温度对层状压缩木材力学性能的影响[J]. 浙江农林大学学报, 2018, 35(5): 935-941.
LI R, HUANG R F, CHANG J M, et al. Mechanical properties of preheated sandwich compressed wood[J]. Journal of Zhejiang A & F University, 2018, 35(5): 935-941.
何啸宇, 王艳伟, 黄荣凤, 等. 过热蒸汽压力对表层微压缩桦木地板坯料尺寸稳定性影响[J]. 森林工程, 2020, 36(6): 72-77, 124.
HE X Y, WANG Y W, HUANG R F, et al. Study on the effect of steam pressure on the dimensional stability of the light surface compression birch flooring blank[J]. Forest Engineering, 2020, 36(6): 72-77, 124.
国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019.
成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1985.
刘一星, 赵广杰. 木材学[M]. 2版. 北京: 中国林业出版社, 2012.
HUANG R F, FENG S H, GAO Z Q. Effect of water/moisture migration in wood preheated by hot press on sandwich compression formation[J]. Holzforschung, 2022, 76(11-12): 1003-1012.
HUANG R F, FENG S H, GAO Z Q, et al. Mechanism elucidation for wood sandwich compression from the perspective of yield stress[J]. Holzforschung, 2023, 77(8): 629-639.
黄荣凤, 高志强, 冯上环, 等. 含水率非均匀分布木材在热板加热下温度分布的变化规律[J]. 木材科学与技术, 2023, 37(1): 40-47.
HUANG R F, GAO Z Q, FENG S H, et al. Temperature distribution in wood with uneven moisture distribution during preheating process by press platens[J]. Chinese Journal of Wood Science and Technology, 2023, 37(1): 40-47.
LY/T 3376—2024, 层状压缩木材[S].
HUANG R F, WANG Y W, ZHAO Y K, et al. Sandwich compression of wood by hygro-thermal control[J]. Mokuzai Gakkaishi, 2012, 58(2): 84-89.
GAO Z Q, HUANG R F, LU J X, et al. Sandwich compression of wood: control of creating density gradient on lumber thickness and properties of compressed wood[J]. Wood Science and Technology, 2016, 50(4): 833-844.
LI R, GAO Z Q, FENG S H, et al. Effects of preheating temperatures on the formation of sandwich compression and density distribution in the compressed wood[J]. Journal of Wood Science, 2018, 64(6): 751-757.
GAO Z Q, HUANG R F, CHANG J M, et al. Sandwich compression of wood: effects of preheating time and moisture distribution on the formation of compressed layer(s)[J]. European Journal of Wood and Wood Products, 2019, 77(2): 219-227.
相关作者
相关机构
微信公众号