竹结构住宅全生命周期碳排放分析
Life-Cycle Carbon Emission Assessment of Bamboo House
- 2024年38卷第2期 页码:43-50
DOI: 10.12326/j.2096-9694.2023183
扫 描 看 全 文
浏览全部资源
扫码关注微信
1.东晟兴诚集团有限公司,江苏扬州 211400
2.南京林业大学材料科学与工程学院,江苏南京 210037
3.中国林业科学研究院木材工业研究所,北京 100091
纸质出版日期: 2024-03-30 ,
扫 描 看 全 文
祝飞飞,余仁民,郑维等.竹结构住宅全生命周期碳排放分析[J].木材科学与技术,2024,38(02):43-50.
ZHU Feifei,YU Renmin,ZHENG Wei,et al.Life-Cycle Carbon Emission Assessment of Bamboo House[J].Chinese Journal of Wood Science and Technology,2024,38(02):43-50.
为了深入了解竹结构住宅的碳排放特性,基于全生命周期方法评价南京林业大学校园内一栋2层示范性竹结构住宅的碳排放量,提出相应的降碳策略,对比分析相同体量木结构(轻型木结构、胶合木结构)和钢结构住宅的碳排放差异。结果表明,竹结构住宅在运行阶段的碳排放量最多,约占其全生命周期碳排放总量的89.8%,竹材自身碳储量占建筑碳排放总量的8.8%。不同结构体系的竹木结构住宅全生命周期净碳排放量相差不大,而相同体量的钢结构住宅则因建材生产能耗高、保温隔热性能差的劣势,其碳排放量比3种竹木结构住宅碳排放量平均值高约89.9%。
To well understand the carbon emission of bamboo houses
this paper presents a life-cycle carbon emission assessment on a two-story bamboo house built at Nanjing Forestry University. Emission-reduction strategies for different carbon emission phases were proposed. Moreover
the differences in carbon emission from typical bamboo
timber
and steel houses with identical dimensions were compared. The results showed that the operation phases emitted the most carbon in the life cycle of the bamboo house
accounting for 89.8% of the total. The carbon storage in the engineered bamboo products accounted for 8.8% of the total carbon emission. Bamboo and timber houses with various structural systems exhibited similar net carbon emissions in their life cycles. Due to high energy consumption and low efficiency in thermal insulation of steel
the carbon emissions of steel structures are 89.9% higher than the average carbon emissions of three types of bamboo or wood structures.
竹结构住宅全生命周期评价碳排放碳储量降碳策略
bamboo houselife-cycle assessmentcarbon emissioncarbon storagecarbon emission reduction strategy
潘毅群, 梁育民, 朱明亚. 碳中和目标背景下的建筑碳排放计算模型研究综述[J]. 暖通空调, 2021, 51(7): 37-48.
PAN Y Q, LIANG Y M, ZHU M Y. Review of building carbon emission calculation models in context of carbon neutrality[J]. Heating Ventilating & Air Conditioning, 2021, 51(7): 37-48.
KAVGIC M, MAVROGIANNI A, MUMOVIC D, et al. A review of bottom-up building stock models for energy consumption in the residential sector[J]. Building and Environment, 2010, 45(7): 1683-1697.
劳万里, 段新芳, 吕斌, 等. 碳达峰碳中和目标下木材工业的发展路径分析[J]. 木材科学与技术, 2022, 36(1): 87-91.
LAO W L, DUAN X F, LYU B, et al. Development path of China wood industry under the targets of carbon dioxide emission peaking and carbon neutrality[J]. Chinese Journal of Wood Science and Technology, 2022, 36(1): 87-91.
王家辉, 徐金梅, 周海宾, 等. 国产胶合木柱生产碳排放量测算及碳减排研究[J]. 木材科学与技术, 2024, 38(1): 73-79.
WANG J H, XU J M, ZHOU H B, et al. Carbon emission estimation and carbon reduction analysis for manufacturing domestic glulam column[J]. Chinese Journal of Wood Science and Technology, 2024, 38(1): 73-79.
LAO W L, CHANG L. Greenhouse gas footprint assessment of wood-based panel production in China[J]. Journal of Cleaner Production, 2023, 389: 136064.
龙超, 王光玉, 鲁德, 等. 竹产品生命周期中碳足迹研究[J]. 世界林业研究, 2023, 36(3): 22-27.
LONG C, WANG G Y, LU D, et al. Life cycle carbon footprint of bamboo products[J]. World Forestry Research, 2023, 36(3): 22-27.
蒋柯夫, 杨瑛. 碳中和目标下轻型木结构建筑碳排放计算及降碳策略研究[J]. 林产工业, 2022, 59(10): 51-55, 68.
JIANG K F, YANG Y. Study on carbon emission calculation and carbon reduction strategy of light timber structure building under carbon neutralization target[J]. China Forest Products Industry, 2022, 59(10): 51-55, 68.
李瑜, 梅诗意, 孟鑫淼, 等. 基于全生命周期评价法的雄安新区某木混结构建筑碳排放及其减碳效果研究[J]. 木材科学与技术, 2022, 36(5): 63-70.
LI Y, MEI S Y, MENG X M, et al. Study on carbon emission and its reduction effect of timber-concrete constructions in Xiongan new district based on life cycle assessment[J]. Chinese Journal of Wood Science and Technology, 2022, 36(5): 63-70.
胡家航, 姬晓迪, 代倩, 等. 基于生命周期评价的井干式木结构建筑环境影响研究[J]. 林业工程学报, 2017, 2(6): 133-138.
HU J H, JI X D, DAI Q, et al. Environmental impact of log house based on life cycle assessment[J]. Journal of Forestry Engineering, 2017, 2(6): 133-138.
尚春静, 储成龙, 张智慧. 不同结构建筑生命周期的碳排放比较[J]. 建筑科学, 2011, 27(12): 66-70, 95.
SHANG C J, CHU C L, ZHANG Z H. Quantitative assessment on carbon emission of different structures in building life cycle[J]. Building Science, 2011, 27(12): 66-70, 95.
黄东梅. 竹/木结构民宅的生命周期评价[D]. 南京: 南京林业大学, 2012.
张智慧, 尚春静, 钱坤. 建筑生命周期碳排放评价[J]. 建筑经济, 2010, 31(2): 44-46.
ZHANG Z H, SHANG C J, QIAN K. Carbon emission assessment of building life cycle[J]. Construction Economy, 2010, 31(2): 44-46.
田勇燕, 秦飞, 言华, 等. 我国常见木本植物的含碳率[J]. 安徽农业科学, 2011, 39(26): 16166-16169.
TIAN Y Y, QIN F, YAN H, et al. Carbon content rate in the common woody plants of China[J]. Journal of Anhui Agricultural Sciences, 2011, 39(26): 16166-16169.
吴如宏, 江亿. 建筑环境设计模拟分析软件DeST 第12讲 软件结构体系[J]. 暖通空调, 2005, 35(7): 54-67, 121.
WU R H, JIANG Y. Building environment design simulation software DeST(12): software structure[J]. Heating Ventilating & Air Conditioning, 2005, 35(7): 54-67, 121.
赵仁杰, 喻云水. 竹材人造板工艺学[M]. 北京: 中国林业出版社, 2002.
宋景智, 郑俊耀. 建筑工程概预算定额与工程量清单计价实例应用手册[M]. 2版. 北京: 中国建筑工业出版社, 2006.
中华人民共和国生态环境部. 企业温室气体排放核算方法与报告指南发电设施(2022年修订版)[R]. 北京: 2022.
张婷. 住宅全生命周期碳排放核算方法及低碳住宅评价体系[D]. 马鞍山: 安徽工业大学, 2013.
毛希凯. 建筑生命周期碳排放预测模型研究:以天津市住宅为例[D]. 天津: 天津大学, 2018.
申娟娟. 基于LCA的建筑碳足迹测算及减排对策研究[D]. 广州: 广东工业大学, 2019.
敬洁, 高宝虎, 王玮. 模块化钢结构建筑碳排放研究测算[J]. 建设科技, 2023(7): 93-95.
JING J, GAO B H, WANG W. Calculation of carbon emission in the whole life cycle of modular steel structure buildings[J]. Construction Science and Technology, 2023(7): 93-95.
相关作者
相关机构
微信公众号