密度与含水率双因素作用下重组竹顺纹弹性模量的预测与分析
Predicting and Analyzing Effects of Density and Moisture Content on Elastic Modulus Parallel to Grain of Bamboo Scrimber
- 2024年38卷第2期 页码:60-67
DOI: 10.12326/j.2096-9694.2023170
扫 描 看 全 文
浏览全部资源
扫码关注微信
1.福建农林大学交通与土木工程学院,福建福州 350002
2.中建海峡建设发展有限公司,福建福州 350000
纸质出版日期: 2024-03-30 ,
扫 描 看 全 文
黄庚浪,盛叶,张峰等.密度与含水率双因素作用下重组竹顺纹弹性模量的预测与分析[J].木材科学与技术,2024,38(02):60-67.
HUANG Genglang,SHENG Ye,ZHANG Feng,et al.Predicting and Analyzing Effects of Density and Moisture Content on Elastic Modulus Parallel to Grain of Bamboo Scrimber[J].Chinese Journal of Wood Science and Technology,2024,38(02):60-67.
本研究选取3组不同密度(1.10、1.20、1.30 g/cm
3
)和5组不同含水率(4%,8%,12%,16%,20%)的重组竹试件进行顺纹抗拉、抗压试验,分析不同密度和含水率作用下重组竹顺纹抗拉、抗压弹性模量的变化规律。结果发现,重组竹顺纹抗拉、抗压弹性模量随密度的增大而增大,随含水率的升高而减小并趋于平衡;通过试验研究和数据拟合提出重组竹顺纹抗拉、抗压弹性模量的双参数耦合模型,线性组合模型和ASTM组合模型均能较好地预测重组竹顺纹抗拉、抗压弹性模量随密度和含水率变化后的理论值,顺纹抗拉弹性模量的实测值与线性组合模型和ASTM组合模型预测值之间最大误差为5.28%和8.20%;顺纹抗压弹性模量的实测值与线性组合模型和ASTM组合模型预测值之间最大误差为8.91%和8.67%,因线性组合模型计算更为简便,建议在实际应用中优先选用。
In this study
bamboo scrimber specimens with three densities (1.10
1.20
1.30 g/cm
3
) and five moisture contents (4%
8%
12%
16%
20%) were tested for tensile and compressive elastic modulus parallel to grain. The changes of tensile and compressive elastic modulus parallel to the grain of bamboo scrimber und
er different densities and moisture contents were analyzed. The results showed that the tensile and compressive elastic modulus parallel to the grain of bamboo scrimbers increased with the increase of density. When the moisture contents increase
the tensile and compressive elastic modulus parallel to the grain decrease and then become balanced eventually. Through experiment research and data fitting
a two-parameter coupling model of tensile and compressive elastic modulus of bamboo scrimber was proposed. Both the linear combination model and the ASTM combination model can well predict the theoretical values of tensile and compressive elastic modulus of bamboo scrimber with changes in density and moisture content. The maximum errors between the measured values and the predicted values of tensile and compressive elastic modulus parallel to grain were 5.28%
8.20% for the linear combination model
and 8.91%
8.67% for the ASTM combination model
respectively. The linear combination model is recommended due to its effective calculation process in practical applications.
重组竹顺纹抗拉、抗压弹性模量密度含水率模型预测
bamboo scrimbertensile and compressive elastic modulus parallel to the graindensitymoisture contentmodel prediction
WU F Y, WEI Y, LIN Y, et al. Experimental study of bamboo scrimber-filled steel tube columns under axial compression[J]. Engineering Structures, 2023, 280: 115669.
ZHANG X C, MAO M, SHAN Q F, et al. Experimental study and theoretical analysis on the flexural performance of steel–bamboo composite beams strengthened with externally prestressed steel strands[J]. Thin-Walled Structures, 2022, 178: 109519.
王晓羽, 徐兆军, 骆立, 等. 基于压电晶片的木材弹性模量测试[J]. 林业工程学报, 2022, 7(6): 74-79.
WANG X Y, XU Z J, LUO L, et al. Wood elastic modulus examination using piezoelectric wafer excitation method[J]. Journal of Forestry Engineering, 2022, 7(6): 74-79.
杨春梅, 李月茹, 田心池, 等. 密度和含水率对竹基纤维复合材料抗弯性能的影响[J]. 木材科学与技术, 2023, 37(3): 44-50.
YANG C M, LI Y R, TIAN X C, et al. Effects of density and moisture content on flexural properties of bamboo-based fiber composites[J]. Chinese Journal of Wood Science and Technology, 2023, 37(3): 44-50.
钟永. 结构用重组竹及其复合梁的力学性能研究[D]. 北京: 中国林业科学研究院, 2018.
羡瑜. 密度梯度对杨木结构胶合板力学性能的影响[D]. 南京: 南京林业大学, 2013.
CHEN S, WEI Y, ZHAO K, et al. Experimental investigation on the flexural behavior of laminated bamboo-timber I-beams[J]. Journal of Building Engineering, 2022, 46: 103651.
LI X Z, MOU Q Y, REN H Q, et al. Effects of moisture content and load orientation on dowel-bearing behavior of bamboo scrimber[J]. Construction and Building Materials, 2020, 262: 120864.
程亮. 重组竹材制造技术的研究[D]. 呼和浩特: 内蒙古农业大学, 2009.
彭亮. 含水率对竹胶合板力学性能的影响及纤维饱和点测定[J]. 湖南林业科技, 2019, 46(5): 28-32.
PENG L. Effects of moisture content on mechanical properties of bamboo plywood and measurement of fiber saturation point[J]. Hunan Forestry Science & Technology, 2019, 46(5): 28-32.
上官蔚蔚. 重组竹物理力学性质基础研究[D]. 北京: 中国林业科学研究院, 2015.
孙玲玲. 重组竹顺纹单轴应力—应变关系研究[D]. 南京: 南京林业大学, 2013.
Kumar A, Vlach T, Laiblova L, et al. Engineered bamboo scrimber: influence of density on the mechanical and water absorption properties[J]. Construction and Building Materials, 2016, 127: 815-827.
沈玉蓉. 竹(木)梁—柱承载力与变形的非弹性分析方法[D]. 南京: 南京林业大学, 2015.
包茜虹. 重组竹的应力—应变关系与强度准则[D]. 南京: 南京林业大学, 2015.
盛宝璐, 周爱萍, 黄东升, 等. 重组竹的顺纹拉压强度与本构关系[J]. 南京林业大学学报(自然科学版), 2015, 39(5): 123-128.
SHENG B L, ZHOU A P, HUANG D S, et al. Uniaxial strength and constitutive law of parallel strand bamboo[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(5): 123-128.
LI H T, ZHANG H Z, QIU Z Y, et al. Mechanical properties and stress strain relationship models for bamboo scrimber[J]. Journal of Renewable Materials, 2020, 8(1): 13-27.
盛宝璐, 周爱萍, 黄东升. 重组竹的单轴与纯剪应力应变关系[J]. 土木建筑与环境工程, 2015, 37(6): 24-31.
SHENG B L, ZHOU A P, HUANG D S. Stress-strain relationship of parallel strand bamboo under uniaxial or pure shear load[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(6): 24-31.
相关作者
相关机构
微信公众号