基于改进Hofstetter模型的杨木组分体积分数对其弹性参数的影响规律
Effect of Component Volume Fractions on Elastic Parameters of Poplar Wood Based on Improved Hofstetter Model
- 2024年38卷第2期 页码:12-19
DOI: 10.12326/j.2096-9694.2023152
扫 描 看 全 文
浏览全部资源
扫码关注微信
1.北京城建集团有限责任公司,北京 100088
2.北京交通大学土木建筑工程学院,北京 100044
纸质出版日期: 2024-03-30 ,
扫 描 看 全 文
王忠铖,杨娜,李久林.基于改进Hofstetter模型的杨木组分体积分数对其弹性参数的影响规律[J].木材科学与技术,2024,38(02):12-19.
WANG Zhongcheng,YANG Na,LI Jiulin.Effect of Component Volume Fractions on Elastic Parameters of Poplar Wood Based on Improved Hofstetter Model[J].Chinese Journal of Wood Science and Technology,2024,38(02):12-19.
木材的微观结构和组分构成是影响其弹性参数的重要因素,但关于木材组分体积分数变化对其弹性参数影响的研究相对较少。通过引入灰分因素,对Hofstetter木材连续微观力学模型进行改进,并在此基础上分析杨木组分的体积分数变化对其弹性参数的影响规律。研究表明:改进的Hofstetter模型可较准确预测杨木的顺纹弹性模量,误差绝对值仅13.71%。结晶纤维素等自身刚度较大的组分体积分数增大时,杨木的弹性模量和剪切模量增幅较大;聚合物网络、无定形纤维素体积分数增大时,泊松比增幅较大;木质素、半纤维素体积分数变化对所有弹性参数的影响均较小。
The microstructure characteristics and composition of wood are important factors that affect elastic parameters. However
little research has been conducted on the impact of volume fraction changes in wood components. The Hofstetter continuum micromechanics model for wood was improved by introducing ash. The effect of changes in the component volume fraction of poplar wood on elastic parameters was discussed. The result shows that the improved Hofstetter model can accurately predict the longitudinal elastic modulus
E
L
with an absolute value of error of 13.71%. The elastic modulus and shear modulus of poplar increase significantly when the component volume fraction with high stiffness such as crystalline cellulose increases. When the volume fraction of polymer network or amorphous cellulose increases
the increase of Poisson’s ratio is significant. Changes in the volume fraction of lignin or hemicellulose have a small impact on all elastic parameters.
杨木改进Hofstetter模型连续介质假设组分弹性参数组分体积分数变化
poplar woodimproved Hofstetter modelcontinuous medium hypothesiscomponentselastic parameterchanges in component volume fractions
GIBSON L J, ASHBY M F. Cellular solids: Structure and properties, chapter 10[M]. Pergamon Press, Oxford, 1988: 387-428.
EASTERLING K, HARRYSSON R, GIBSON L J, et al. On the mechanics of Balsa and other woods[J]. Proceedings of the Royal Society A: Mathematical, 1982, 383: 31-41.
WATANABE U, NORIMOTO M, OHGAMA T, et al. Tangential Young's modulus of coniferous early wood investigated using cell models[J]. Holzforschung, 1999, 53(2): 209-214.
BARBER N F, MEYLAN B A. The anisotropic shrinkage of wood. A theoretical model[J]. Holzforschung, 1964, 18(5): 146-156.
CAVE I D. A theory of the shrinkage of wood[J]. Wood Science and Technology, 1972, 6(4): 284-292.
MÜLLER U, SRETENOVIC A, GINDL W A, et al. Longitudinal shear properties of european larch wood related to cell-wall structure[J]. Wood and Fiber Science, 2004, 36(2): 143-151.
LANDIS E N, VASIC S, DAVIDS W G, et al. Coupled experiments and simulations of microstructural damage in wood[J]. Experimental Mechanics, 2002, 42(4): 389-394.
DAVIDS W, LANDIS E, VASIC S. Lattice models for the prediction of load-induced failure and damage in wood[J]. Wood and Fiber Science, 2003, 35(1): 120-134.
FOURNIER C R, DAVIDS W G, NAGY E, et al. Morphological lattice models for the simulation of softwood failure and fracture[J]. Holzforschung, 2007, 61(4): 360-366.
HOFSTETTER K, HELLMICH C, EBERHARDSTEINER J. Development and experimental validation of a continuum micromechanics model for the elasticity of wood[J]. European Journal of Mechanics, 2005, 24(6): 1030-1053.
HOFSTETTER K, HELLMICH C, EBERHARDSTEINER J, et al. Micromechanical estimates for elastic limit states in wood materials, revealing nanostructural failure mechanisms[J]. Mechanics of Advanced Materials and Structures, 2008, 15(6/7): 474-484.
HOFSTETTER K, GAMSTEDT E K. Hierarchical modelling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004-2008: Wood machining-micromechanics and fracture[J]. Holzforschung, 2009, 63(2): 130-138.
HOFSTETTER K, HELLMICH C, EBERHARDSTEINER J. Continuum micromechanics estimation of wood strength[J]. Proceedings in Applied Mathematics and Mechanics, 2010, 6(1): 75-78.
BADER T K, HOFSTETTER K, HELLMICH C, et al. The poroelastic role of water in cell walls of the hierarchical composite “softwood”[J]. Acta Mechanica, 2011, 217(s1-2): 75-100.
BADER T K, HOFSTETTER K, HELLMICH C, et al. Poromechanical scale transitions of failure stresses in wood: from the lignin to the spruce level[J]. ZAMM - Journal of Applied Mathematics and Mechanics, 2010, 90(10/11): 750-767.
BORST K D, BADER T K. Structure-function relationships in hardwood-Insight from micromechanical modelling[J]. Journal of Theoretical Biology, 2014, 345: 78-91.
张研, 张子明. 材料细观力学[M]. 北京: 科学出版社, 2008: 58-81.
尹思慈. 木材学[M]. 北京: 中国林业出版社, 1996: 80-81.
徐旭荣, 蔡安华, 刘睿, 等. 生物矿化中的无定形碳酸钙[J]. 化学进展, 2008, 20(1): 54-59.
XU X R, CAI A H, LIU R, et al. Amorphous calcium carbonate in biomineralization[J]. Progress in Chemistry, 2008, 20(1): 54-59.
TASHIRO K, KOBAYASHI M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds[J]. Polymer, 1991, 32(8): 1516-1526.
BERGANDER A, SALMÉN L. Cell wall properties and their effects on the mechanical properties of fibers[J]. Journal of Materials Science, 2002, 37(1): 151-156.
罗祖道, 李思简. 各向异性材料力学[M]. 上海: 上海交通大学出版社, 1994: 11-15.
ROBERT J R. Wood handbook: Wood as an engineering material[M]. Forest Products Laboratory, USDA Forest Service, 2010.
相关作者
相关机构
微信公众号