木材气干密度与基本密度关系模型比较
Comparison of Correlation Models Between Wood Basic Density and Air-Dry Density
- 2024年38卷第3期 页码:72-77
DOI: 10.12326/j.2096-9694.2023111
扫 描 看 全 文
浏览全部资源
扫码关注微信
中国林业科学研究院木材工业研究所,北京 100091
纸质出版日期: 2024-05-30 ,
扫 描 看 全 文
虞华强,李晓玲,安鑫等.木材气干密度与基本密度关系模型比较[J].木材科学与技术,2024,38(03):72-77.
YU Huaqiang,LI Xiaoling,AN Xin,et al.Comparison of Correlation Models Between Wood Basic Density and Air-Dry Density[J].Chinese Journal of Wood Science and Technology,2024,38(03):72-77.
木材密度包括基本密度、气干密度等,在12%含水率条件下的气干密度(
D
12
)较常用,因此有必要将木材气干密度换算为基本密度(
D
b
)。目前利用木材气干密度计算基本密度的模型有Reyes、Chave、Simpson和Vieilledent模型等,然而这些模型预测结果不完全一致。利用中国林业科学研究院木材工业研究所(Research Institute of Wood Industry,Chinese Academy of Forestry,CRIWI)和法国农业国际合作研究发展中心(French Agricultural Research Centre for International Development,CIRAD)的木材
D
12
和
D
b
数据,首先基于CRIWI的木材密度数据建立
D
12
与
D
b
的关系模型,然后将CRIWI和CIRAD的
D
12
数据分别代入Reyes模型、Chave模型、Simpson模型、Vieilledent模型和新建模型,获得每个树种木材
D
b
的预测值,并根据
D
b
预测值和实测值计算残差绝对值均值。不同模型残差绝对值均值比较结果表明:Reyes模型在利用CRIWI和CIRAD的木材密度数据时预测
D
b
的准确性都比较高,适用性最广;Simpson模型、新建模型在
D
12
高于1.0 g/cm
3
时预测
D
b
的准确性降低。
Wood density includes basic density
air-dry density
etc. The air-dry density (
D
12
) measured at the moisture content of 12% is more commonly used
so it is necessary to convert wood air-dry density to basic density (
D
b
). Currently
the models that use air-dry density to calculate basic density
include Reyes
Chave
Simpson
and Vieilledent models. However
these models do not offer completely consistent predictions. This study used data of wood basic density and air-dry density from Research Institute of Wood Industry
Chinese Academy of Forestry (CRIWI) and French Agricultural Research Centre for International Development (CIRAD) to evaluate the prediction precision difference among the models mentioned above. Firstly
a correlation model- between
D
12
and
D
b
was established based on CRIWI w
ood density database. Then
the air-dry density at 12% moisture content of individual wood species from the CRIWI and the CIRAD wood density database was applied to the Reyes model
Chave model
Simpson model
Vieilledent model
and the newly fitted model respectively to predict basic densities of each wood species. Then the mean absolute value of the error (MAE) was calculated from the predicted and the measured value of the wood basic density . By comparing the MAE of different models
the results indicate that only the Reyes model can appropriately predict basic density corresponding to either the CRIWI or CIRAD wood density databases. For both the Simpson model and the newly fitted model
the accuracy in predicting basic density significantly decreases when the air-dry density at 12% moisture content exceeds 1.0 g/cm
3
.
木材基本密度木材气干密度关系模型含水率
wood basic densitywood air-dry densitycorrelation modelmoisture content
成俊卿. 木材学[M]. 北京: 中国林业出版社, 1985.
鲍甫成, 江泽慧. 中国主要人工林树种木材性质[M]. 北京: 中国林业出版社, 1998.
BILLARD A, BAUER R, MOTHE F, et al. Improving aboveground biomass estimates by taking into account density variations between tree components[J]. Annals of Forest Science, 2020, 77(4): 103.
陈宗铸, 陈毅青, 陈小花, 等. 基于不同预测变量的橡胶树地上生物量模型[J]. 西北林学院学报, 2020, 35(4): 45-50.
CHEN Z Z, CHEN Y Q, CHEN X H, et al. Establishment of aboveground biomass models based on different predictors for Hevea brasiliensis[J]. Journal of Northwest Forestry University, 2020, 35(4): 45-50.
REYES G, BROWN S, CHAPMAN J, et al. Wood densities of tropical tree species[R/OL]. New Orleans: United States Department of Agriculture, 1992. https://www.researchgate.net/publication/237339477_Wood_Densities_of_Tropical_Tree_Specieshttps://www.researchgate.net/publication/237339477_Wood_Densities_of_Tropical_Tree_Species.
CHAVE J, MULLER-LANDAU H C, BAKER T R, et al. Regional and phylogenetic variation of wood density across 2456 Neotropical tree species[J]. Ecological Applications, 2006, 16(6): 2356-2367.
VIEILLEDENT G, FISCHER F J, CHAVE J, et al. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database[J]. American Journal of Botany, 2018, 105(10): 1653-1661.
SIMPSON W T. Specific gravity, moisture content, and density relationship for wood[R/OL]. Madison: Forest Products Laboratory. 1993.https://www.fpl.fs.usda.gov/documnts/fplgtr/fplgtr76.pdfhttps://www.fpl.fs.usda.gov/documnts/fplgtr/fplgtr76.pdf.
中国林业科学研究院木材工业研究所. 中国主要树种的木材物理力学性质[M]. 北京: 中国林业出版社, 1982.
CHUDNOFF M. Tropical timbers of the world[M]. Washington D C: Department of Agriculture, Forest Service, USA, 1984.
IPCC. 2006 IPCC Guidelines for national greenhouse gas inventories: a primer[R]. Intergovernmental Panel On Climate Change, 2006.
SALLENAVE P. Propriétés physiques et mécaniques des bois tropicaux. Deuxième supplément[R]. Centre Technique Forestier Tropical, Nogent-sur-marne, France, 1971.
SALLENAVE P. Propriétés physiques et mécaniques des bois tropicaux. Premier supplément[R]. Centre Technique Forestier Tropical, Nogent-sur-marne, France, 1964.
SALLENAVE P. Propriétés physiques et mécaniques des bois tropicaux del'Union française[R]. Centre Technique Forestier Tropical, Nogent-sur-marne, France, 1955.
CHAVE J, COOMES D, JANSEN S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2009, 12(4): 351-366.
KUMAR D, THAKUR C L, BHARDWAJ D R, et al. Biodiversity conservation and carbon storage of Acacia catechu Willd. Dominated northern tropical dry deciduous forest ecosystems in north-western Himalaya: implications of different forest management regimes[J]. Frontiers in Environmental Science, 2022, 10(9): 1-16.
STAMM A. Wood and Cellulose Science[M]. Ronald Press, USA, 1964.
FEIST W C, TARKOW H. A new procedure for measuring fiber saturation points. Forest Product Journal[J]. 1967, 17(10): 65-68.
WALKER J C F. Primary wood processing: principles and practice[M]. 2nd ed. Dordrecht: Springer, 2006.
高鑫, 庄寿增. 利用核磁共振测定木材吸着水饱和含量[J]. 波谱学杂志, 2015, 32(4): 670-677.
GAO X, ZHUANG S Z. Bound water content in saturated wood cell wall determined by nuclear magnetic resonance spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 670-677.
相关作者
相关机构
微信公众号