热可逆性共价交联木塑复合材料的制备及力学性能
Preparation and Mechanical Properties of Thermally Reversible Covalent Crosslinked Wood-Plastic Composites
- 2023年37卷第4期 页码:44-50
DOI: 10.12326/j.2096-9694.2023051
扫 描 看 全 文
1.华南农业大学生物质工程研究院;农业农村部能源植物资源与利用重点实验室,广东广州 510642
2.生物基材料与能源教育部重点实验室(华南农业大学材料与能源学院),广东广州 510642
3.江南大学合成与生物胶体教育部重点实验室,江苏无锡 214122
扫 描 看 全 文
赵念晗,郝笑龙,杨伟军等.热可逆性共价交联木塑复合材料的制备及力学性能[J].木材科学与技术,2023,37(04):44-50.
ZHAO Nianhan,HAO Xiaolong,YANG Weijun,et al.Preparation and Mechanical Properties of Thermally Reversible Covalent Crosslinked Wood-Plastic Composites[J].Chinese Journal of Wood Science and Technology,2023,37(04):44-50.
为提高木塑复合材料(wood-plastic composites,WPCs)的力学性能,基于酯交换反应,以木粉、E51环氧树脂和邻苯二甲酸酐为原料,通过热压成型工艺制备热可逆性共价交联木塑复合材料(TRC-WPCs),探究环氧与酸酐量比、热压工艺参数和循环加工对TRC-WPCs力学性能的影响。当环氧与酸酐的量比为1∶1,热压时间为30 min、热压温度为150 °C、热压压力为12 MPa时,TRC-WPCs的力学性能最优,其拉伸强度、拉伸模量、弯曲强度和弯曲模量分别为47.3 MPa、9.3 GPa、79.2 MPa和8.9 GPa,比相同木粉含量的高密度聚乙烯基WPCs高出282%、204%、305%和245%;且循环加工后其弯曲强度和弯曲模量保持率为67.8%和84.2%,实现了TRC-WPCs的高强度化,并且高温下可循环加工。
To improve the mechanical properties of wood-plastic composites (WPCs), in this study, a thermally reversible covalent crosslinked WPCs (TRC-WPCs) was prepared based on transesterification reaction using wood flour (WF), E-51 epoxy resin, and phthalic anhydride as raw materials through the hot-pressing process. The effects of epoxy/anhydride molar ratio, hot-pressing parameters, and cyclic reprocessing on the mechanical properties of TRC-WPCs were investigated. The optimum molar ratio of epoxy to anhydride was 1∶1. The optimal hot-pressing parameters of TRC-WPCs were as follows: hot-pressing time of 30 min, temperature of 150 ℃, and pressure of 12 MPa. The tensile strength, tensile modulus, flexural strength, and flexural modulus of TRC-WPCs prepared with the optimal formulation and hot-pressing process were 47.3 MPa, 9.3 GPa, 79.2 MPa and 8.9 GPa, respectively, which were 282%, 204%, 305%, and 245% higher than those of the WF/HDPE (high-density polyethylene, HDPE) composites with the same WF content. The retention rate of flexural strength and modulus after cyclic reprocessing was 67.8% and 84.2%. The TRC-WPCs can be permanently crosslinked at service temperatures and efficiently plasticized at high temperatures, showing remarkable mechanical properties and reprocessability.
热可逆性共价交联木塑复合材料环氧类玻璃高分子可逆共价键循环加工热压工艺力学性能
thermally reversible covalent crosslinked wood-plastic composites (TRC-WPCs)epoxy vitrimerreversible covalent bondingcyclic reprocessinghot-pressing processmechanical properties
FARUK O, BLEDZKI A K, FINK H P, et al. Biocomposites reinforced with natural fibers: 2000-2010[J]. Progress in Polymer Science, 2012, 37(11): 1552-1596.
王清文, 王伟宏, 欧荣贤. 木塑复合材料制造与应用[M]. 北京: 科学出版社, 2018.
郝笑龙, 周海洋, 孙理超, 等. 共挤出成型木塑复合材料研究进展与应用[J]. 林业工程学报, 2021, 6(5): 27-38.
HAO X L, ZHOU H Y, SUN L C, et al. Research progress and application of co-extruded wood plastic composites[J]. Journal of Forestry Engineering, 2021, 6(5): 27-38.
CHEN L, TANG W, ZHOU H, et al. Constructing a rigid-flexible grid structure for simultaneously strengthening and toughening bamboo flour/plastic composites through the introduction of continuous carbon fabric meshes via multi-layer co-extrusion[J]. Composites Science and Technology, 2023,242: 110204.
张泽平, 容敏智, 章明秋. 基于可逆共价化学的交联聚合物加工成型研究: 聚合物工程发展的新挑战[J]. 高分子学报, 2018(7): 829-852.
ZHANG Z P, RONG M Z, ZHANG M Q. Research on processing and molding of cross-linked polymers based on reversible covalent chemistry: a new challenge for polymer engineering development[J]. Acta Polymerica Sinica, 2018(7): 829-852.
MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968.
DENISSEN W, WINNE J M, DU PREZ F E. Vitrimers: permanent organic networks with glass-like fluidity[J]. Chemical Science, 2016, 7(1): 30-38.
段冲, 李舜, 谢勇, 等. 环氧树脂的生产消费现状及市场预测[J]. 热固性树脂, 2023, 38(1): 50-52.
DUAN C, LI S, XIE Y, et al. Production and consumption status and market forecast of epoxy resin[J]. Thermosetting Resin, 2023, 38(1): 50-52.
LU L, PAN J, LI G Q. Recyclable high-performance epoxy based on transesterification reaction[J]. Journal of Materials Chemistry A, 2017, 5(40): 21505-21513.
MEMON H, LIU H Y, RASHID M A, et al. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability[J]. Macromolecules, 2020, 53(2): 621-630.
王艳萍, 刘晓琴, 井新利, 等. 环氧树脂类玻璃高分子研究进展[J]. 化学通报, 2021, 84(4): 313-321.
WANG Y P, LIU X Q, JING X L, et al. Research progress in epoxy vitrimer[J]. Chemistry, 2021, 84(4): 313-321.
MONTANARI C, OLSÉN P, BERGLUND L A. Interface tailoring by a versatile functionalization platform for nanostructured wood biocomposites[J]. Green Chemistry, 2020, 22(22): 8012-8023.
KHELIFA F, HABIBI Y, BONNAUD L, et al. Epoxy monomers cured by high cellulosic nanocrystal loading[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10535-10544.
CAPELOT M, MONTARNAL D, TOURNILHAC F, et al. Metal-catalyzed transesterification for healing and assembling of thermosets[J]. Journal of the American Chemical Society, 2012, 134(18):7664-7667.
HAN J R, LIU T, HAO C, et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer[J]. Macromolecules, 2018, 51(17): 6789-6799.
CAPELOT M, UNTERLASS M M, TOURNILHAC F, et al. Catalytic control of the vitrimer glass transition[J]. ACS Macro Letters, 2012, 1(7): 789-792.
HAYASHI M, YANO R. Fair investigation of cross-link density effects on the bond-exchange properties for trans-esterification-based vitrimers with identical concentrations of reactive groups[J]. Macromolecules, 2020, 53(1): 182-189.
相关作者
相关机构
微信公众号