脱脂大豆蛋白/蔗糖-磷酸二氢铵胶黏剂的合成工艺研究
Study on Synthesis Technology of Defatted Soybean Protein/ Sucrose-Ammonium Dihydrogen Phosphate Adhesive
- 2023年37卷第4期 页码:28-35
DOI: 10.12326/j.2096-9694.2023004
扫 描 看 全 文
1.南京林业大学家居与工业设计学院,江苏南京 210037
扫 描 看 全 文
张雪,林秋沐,赵中元.脱脂大豆蛋白/蔗糖-磷酸二氢铵胶黏剂的合成工艺研究[J].木材科学与技术,2023,37(04):28-35.
ZHANG Xue,LIN Qiumu,ZHAO Zhongyuan.Study on Synthesis Technology of Defatted Soybean Protein/ Sucrose-Ammonium Dihydrogen Phosphate Adhesive[J].Chinese Journal of Wood Science and Technology,2023,37(04):28-35.
以脱脂大豆蛋白(defatted soy protein,DSF)、蔗糖(Sucrose)、磷酸二氢铵(ammonium dihydrogen phosphate,ADP)为主要原料,制备一种新型大豆蛋白-蔗糖基胶黏剂(DSF/SADP),探讨固体物质质量分数、脱脂大豆蛋白与蔗糖-磷酸二氢铵糖液的质量比、合成温度及合成时间对胶黏剂胶合强度的影响,分析胶黏剂的热固化行为与固化机理。在胶黏剂的优化合成工艺:固体物质质量分数70%、脱脂大豆蛋白与蔗糖-磷酸二氢铵溶液质量比1∶4、合成温度70 ℃、合成时间3 h的条件下,热压温度为170 ℃,热压时间为7 min时,制备三层胶合板的湿胶合强度为0.99 MPa。胶黏剂不溶解率、热重分析和差示扫描量热分析的结果显示,DSF/SADP胶黏剂在热降解过程中可能伴随着缩聚反应的发生;红外光谱测试和微观形貌观察结果显示,5-羟甲基糠醛或其衍生物参与交联反应,形成的C-O-C是固化后聚合物的主要连接键;加入DSF的胶黏剂固化后表面孔洞直径减小,表面更加致密。
A novel soybean protein-sucrose based adhesive (DSF/SADP) was made of defatted soybean protein (DSF), sucrose, and ammonium dihydrogen phosphate (ADP). The effects of mass of solid components, the mass ratio of defatted soybean protein to sucrose and ammonium dihydrogen phosphate solution, the synthesis temperature, and the synthesis time on the bonding strength of the adhesive were investigated. The optimum synthesis process of the adhesive was as follows: mass of solid components of 70%, the mass ratio of defatted soybean protein to sucrose and ammonium dihydrogen phosphate 1∶4, the synthesis temperature of 70 ℃, the synthesis time of 3 h, when the hot pressing temperature was 170 ℃ and the hot pressing time was 7 minutes, the wet bonding strength of the three-layer plywood was 0.99 MPa. The results of thermal gravimetric analysis (TG) and differential scanning calorimetry (DSC) showed that DSF/SADP adhesives possibly accompanied by polycondensation during thermal degradation. The results of infrared spectroscopy and microscopic morphology showed that 5-hydroxymethylfurfural or its derivatives participated in the cross-linking reaction; and the formed C-O-C was the main bond of the cured polymer; the cured adhesive with DSF reduces the diameter of the surface holes and provides a denser surface.
大豆蛋白蔗糖磷酸二氢铵胶黏剂胶合板
soy proteinsucroseammonium dihydrogen phosphateadhesiveplywood
Karthäuser J, Biziks V, Mai C, et al. Lignin and lignin-derived compounds for wood applications—A review[J]. Molecules, 2021, 26(9): 2533.
LIU Z, LIU T, LI Y, et al. Performance of soybean protein adhesive cross-linked by lignin and cuprum[J]. Journal of Cleaner Production, 2022, 366: 132906.
LUO H, YIN Y, WANG Y, et al. Enhanced properties of a soybean adhesive by modification with a cycloaliphatic epoxy resin[J]. International Journal of Adhesion and Adhesives, 2022, 114: 103026.
CHEN X, SUN C, WANG Q, et al. Preparation of glycidyl methacrylate grafted starch adhesive to apply in high-performance and environment-friendly plywood[J]. International Journal of Biological Macromolecules, 2022, 194: 954-961.
Ando D, Umemura K. Chemical structures of adhesive and interphase parts in sucrose/citric acid type adhesive wood-based molding derived from japanese cedar (cryptomeria japonica)[J]. Polymers, 2021, 13(23): 4224.
XIAO G, LIANG J, LI D, et al. Fully bio-based adhesive from tannin and sucrose for plywood manufacturing with high performances[J]. Materials, 2022, 15(24): 8725.
SUN S, ZHANG M, Umemura K, et al. Investigation and characterization of synthesis conditions on sucrose-ammonium dihydrogen phosphate (SADP) adhesive: Bond performance and chemical transformation[J]. Materials, 2019, 12(24): 4078.
SUN S, ZHAO Z, Umemura K. Further exploration of sucrose-citric acid adhesive: Synthesis and application on plywood[J]. Polymers, 2019, 11(11): 1875.
ZHAO Z, SUN S, WU D, et al. Synthesis and characterization of sucrose and ammonium dihydrogen phosphate (SADP) adhesive for plywood[J]. Polymers, 2019, 11(12): 1909.
ZHAO Z, Sakai S, WU D, et al. Further exploration of sucrose–citric acid adhesive: Investigation of optimal hot-pressing conditions for plywood and curing behavior[J]. Polymers-Basel, 2019, 11(12): 1996.
ZHAO Z, Sakai S, WU D, et al. Investigation of synthesis mechanism, optimal hot-pressing conditions, and curing behavior of sucrose and ammonium dihydrogen phosphate adhesive[J]. Polymers, 2020, 12(1): 216.
林巧佳, 陈奶荣, 郑培涛, 等. 脱脂豆粉制备大豆基胶黏剂的研究进展[J]. 森林与环境学报, 2016, 36(3): 266-271.
Kitabatake N, Tahara M, Doi E. Thermal denaturation of soybean protein at low water contents[J]. Agricultural and biological chemistry, 1990, 54(9): 2205-2212.
ZHAO Z, ZHANG X, LIN Q, et al. Development and investigation of a two-component adhesive composed of soybean flour and sugar solution for plywood manufacturing[J]. Wood Material Science & Engineering, 2023, 18(3): 884-92.
LI Y D, CHEN S C, ZENG J B, et al. Novel biodegradable poly (1, 4-dioxan-2-one) grafted soy protein copolymer: synthesis and characterization[J]. Industrial & Engineering Chemistry Research, 2008, 47(21): 8233-8238.
Seino H, Uchibori T, Nishitani T, et al. Enzymatic synthesis of carbohydrate esters of fatty acid (I) esterification of sucrose, glucose, fructose and sorbitol[J]. Journal of the American Oil Chemists’ Society, 1984, 61(11): 1761-1765.
Kacurakova M, Capek P, Sasinkova V, et al. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses[J]. Carbohydrate Polymers, 2000, 43(2): 195-203.
Kong J, YU S. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimica et Biophysica Sinica, 2007, 39(8): 549-559.
Schmidt V, Giacomelli C, Soldi V. Thermal stability of films formed by soy protein isolate–sodium dodecyl sulfate[J]. Polymer Degradation and Stability, 2005, 87(1): 25-31.
Surendra B, Veerabhadraswamy M. Microwave assisted synthesis of Schiff base via bioplatform chemical intermediate (HMF) derived from Jatropha deoiled seed cake catalyzed by modified bentonite clay[J]. Materials Today: Proceedings, 2017, 4(11): 11968-11976.
Adina C, Fetea F, Matei H, et al. Evaluation of hydrolytic activity of different pectinases on sugar beet (Beta vulgaris) substrate using FT-MIR spectroscopy[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39(2): 99-104.
相关作者
相关机构
微信公众号