木材发电机理及应用研究进展
Research Progress on Mechanism and Application of Electric Power Generation with Wood
- 2023年37卷第4期 页码:1-12
DOI: 10.12326/j.2096-9694.2022225
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
2.青岛大学生物多糖纤维成形与生态纺织国家重点实验室,山东青岛 266071
扫 描 看 全 文
卢芸,吴桐,付宗营等.木材发电机理及应用研究进展[J].木材科学与技术,2023,37(04):1-12.
LU Yun,WU Tong,FU Zongying,et al.Research Progress on Mechanism and Application of Electric Power Generation with Wood[J].Chinese Journal of Wood Science and Technology,2023,37(04):1-12.
化石燃料过度开发导致能源危机和环境生态问题,研发绿色发电材料越发重要。木材作为一种广泛存在且可再生的资源,在全球范围内储量丰富。近年来,利用木材进行发电成为一种应对能源危机的新方式。主要介绍压电、摩擦纳米发电和水伏发电三种发电技术及发电机理,分析改性技术对木材发电性能的影响,总结当前木材作为绿色发电材料器件的优势及应用场景,并对木材发电技术的前景和面临的挑战进行展望。
Due to the excessive exploitation of fossil fuels, it has led to serious energy crises and environmental ecological issues, making the research of green power generation materials increasingly important. Wood, as a widely available and renewable resource, has abundant reserves worldwide. In recent years, generating power from wood has emerged as a new strategy to combat the energy crisis. This paper mainly introduces three kinds of wood power generation technologies and power generation mechanisms: piezoelectricity, triboelectric nano-power generation and hydrovoltaic power generation, analyzes the impact of modification technologies on wood power generation performance, summarizes the current advantages and application scenarios of wood as a green power generation material device, and discusses the prospects and challenges of wood power generation technology are prospected.
木材压电发电摩擦纳米发电水伏发电纤维素晶体发电器件
woodpiezoelectric power generationtriboelectric nano power generationhydrovoltaic power generationcellulose crystalpower generation device
YANG R, QIN Y, DAI L, et al. Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanotechnology, 2009, 4(1): 34-39.
YAN J, JEONG Y G. High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15700-15709.
Karan S K, Mandal D, Khatua B B. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester[J]. Nanoscale, 2015, 7(24): 10655-10666.
SONG J, CHEN C, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554(7691): 224-228.
Fukada E. Piezoelectricity of biopolymers[J]. Biorheology, 1995, 32(6): 593-609.
李坚, 孙庆丰. 大自然给予的启发——木材仿生科学刍议[J]. 中国工程科学, 2014, 16(4):4-12.
LI J, SUN Q F. Inspirations from nature——Preliminary discussion of wood bionics[J]. Engineering Sciences, 2014, 16(4):4-12.
Fukada E. Piezoelectricity of wood[J]. Journal of the Physical Society of Japan, 1955, 10(2): 149-154.
CHEN C, HU L. Nanoscale ion regulation in wood‐based structures and their device applications[J]. Advanced Materials, 2021, 33(28): 2002890.
李坚. 大自然的启发——木材仿生与智能响应[J]. 科技导报, 2016, 34(19): 1.
CHEN C, KUANG Y, ZHU S, et al. Structure–property–function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642-666.
Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose[J]. Journal of Molecular Liquids, 2010, 156(1): 76-81.
Jarvis M. Cellulose stacks up[J]. Nature, 2003, 426(6967): 611-612.
苏茂尧. 纤维素结晶变体的结构及其研究进展[J]. 广东化纤技术通讯, 1980(1): 28-41.
Schweizer E. Das kupferoxyd-ammoniak, ein auflsungsmittel für die pflanzenfaser[J]. Journal für Praktische Chemie,1857, 72(1): 109-111.
Zugenmaier P. Crystalline cellulose and derivatives: characterization and structures[M]. Springer Science & Business Media, 2008.
Park S, Baker J O, Himmel M E, et al. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance[J]. Biotechnology for Biofuels, 2010, 3: 1-10.
WANG Z L, WANG A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30: 34-51.
SUN J, GUO H, Ribera J, et al. Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications[J]. ACS Nano, 2020, 14(11): 14665-14674.
SUN J, Schütz U, TU K, et al. Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects[J]. Nano Energy, 2022, 102: 107670.
ZHOU X, ZHANG W, ZHANG C, et al. Harvesting electricity from water evaporation through microchannels of natural wood[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 11232-11239.
Curie J, Curie P. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées[J]. Bulletin De minéralogie, 1880, 3(4): 90-93.
Hinchet R, Khan U, Falconi C, et al. Piezoelectric properties in two-dimensional materials: Simulations and experiments[J]. Materials Today, 2018, 21(6): 611-630.
冯端. 固体物理学大辞典[M]. 北京: 高等教育出版社, 1995.
Fukada E. Piezoelectric properties of biological polymers[J]. Quarterly Reviews of Biophysics, 1983, 16(1): 59-87.
Hirai N, Sobue N, Date M. New piezoelectric moduli of wood: d 31 and d 32[J]. Journal of Wood Science, 2011, 57: 1-6.
Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2002, 124(31): 9074-9082.
Chae I, Jeong C K, Ounaies Z, et al. Review on electromechanical coupling properties of biomaterials[J]. ACS Applied Bio Materials, 2018, 1(4): 936-953.
García Y, Ruiz-Blanco Y B, Marrero-Ponce Y, et al. Orthotropic piezoelectricity in 2D nanocellulose[J]. Scientific Reports, 2016, 6(1): 1-8.
SONG Y, SHI Z, HU G H, et al. Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review[J]. Journal of Materials Chemistry A, 2021, 9(4): 1910-1937.
Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941-3994.
Zhai L, Kim H C, Kim J W, et al. Alignment effect on the piezoelectric properties of ultrathin cellulose nanofiber films[J]. ACS Applied Bio Materials, 2020, 3(7): 4329-4334.
Nakai T, Igushi N, Ando K. Piezoelectric behavior of wood under combined compression and vibration stresses I: Relation between piezoelectric voltage and microscopic deformation of a Sitka spruce (Picea sitchensis Carr.)[J]. Journal of Wood Science, 1998, 44(1): 28-34.
Fukada E. Piezoelectricity as a fundamental property of wood[J]. Wood Science and Technology, 1968, 2(4): 299-307.
SUN J, GUO H, Schädli G N, et al. Enhanced mechanical energy conversion with selectively decayed wood[J]. Science Advances, 2021, 7(11): eabd9138.
Ram F, Garemark J, Li Y, et al. Functionalized Wood Veneers as Vibration Sensors: Exploring Wood Piezoelectricity and Hierarchical Structure Effects[J]. ACS Nnano, 2022, 16(10): 15805-15813.
Lemaire E, Ayela C, Atli A. Eco-friendly materials for large area piezoelectronics: self-oriented Rochelle salt in wood[J]. Smart Materials and Structures, 2018, 27(2): 025005.
Ram F, Garemark J, Li Y, et al. Scalable, efficient piezoelectric wood nanogenerators enabled by wood/ZnO nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107057.
Frfa B , Zqt B , Zhong L . Flexible triboelectric generator[J]. Nano Energy, 2012, 1( 2):328-334.
LináWang Z. Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives[J]. Faraday Discussions, 2014, 176: 447-458.
WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 2013, 7(11): 9533-9557.
YANG W, CHEN J, ZHU G, et al. Harvesting energy from the natural vibration of human walking[J]. ACS Nano, 2013, 7(12): 11317-11324.
GUO Y, CHEN Y, MA J, et al. Harvesting wind energy: A hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects[J]. Nano Energy, 2019, 60: 641-648.
LIU Z, Muhammad M, CHENG L, et al. Improved output performance of triboelectric nanogenerators based on polydimethylsiloxane composites by the capacitive effect of embedded carbon nanotubes[J]. Applied Physics Letters, 2020, 117(14):143903.
ZHAO K, WANGZ L, YANG Y. Self-powered wireless smart sensor node enabled by an ultrastable, efficienthighly, and superhydrophobic-surface-based triboelectric nanogenerator[J]. ACS nano, 2016, 10(9): 9044-9052.
Kim I, Jeon H, Kim D, et al. All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process[J]. Nano Energy, 2018, 53: 975-981.
YUN B K, Kim J W, Kim H S, et al. Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators[J]. Nano Energy, 2015, 15:523-529.
HE C, ZHU W, CHEN B, et al. Smart floor with integrated triboelectric nanogenerator as energy harvester and motion sensor[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26126-26133.
Diaz A F, Felix-Navarro R M. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties[J]. Journal of Electrostatics, 2004, 62(4): 277-290.
HAO S, JIAO J, CHEN Y, et al. Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors[J]. Nano Energy, 2020, 75: 104957.
LUO J, WANG Z, XU L, et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics[J]. Nature Communications, 2019, 10(1): 1-9.
Bang J, Moon I K, Jeon Y P, et al. Fully wood-based green triboelectric nanogenerators[J]. Applied Surface Science, 2021, 567: 150806.
SUN J , TU K , BücheleS, et al. Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators[J]. Matter, 2021, 4(9):3049-3066.
XUE G, XU Y, DING T, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4): 317-321.
ZHAO W, LIU Z, SUN Z, et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature, 2017, 549(7671): 247-251.
XIAO K, JIANG L, Antonietti M. Ion transport in nanofluidic devices for energy harvesting[J]. Joule, 2019, 3(10): 2364-2380.
FANG J, LIU J, GU J, et al. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J]. Chemistry of Materials, 2018, 30(18): 6217-6221.
ZHENG C, CHU W, FANG S, et al. Materials for evaporation‐driven hydrovoltaic technology[J]. Interdisciplinary Materials, 2022, 1(4): 449-470.
Israelachvili J N. Intermolecular and surface forces[M]. Academic press, 2011.
Garemark J, Ram F, LIU L, et al. Advancing hydrovoltaic energy harvesting from wood through cell wall nanoengineering[J]. Advanced Functional Materials, 2023, 33(4): 2208933.
ZHAO J, ZHANG W, LIU T, et al. Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions[J]. Small Methods, 2022, 6(9): 2200664.
ZHANG K, CAI L, Nilghaz A, et al. Enhancing output performance of surface-modified wood sponge-carbon black ink hygroelectric generator via moisture-triggered galvanic cell[J]. Nano Energy, 2022, 98: 107288.
SHI X, LUO J, LUO J, et al. Flexible wood-based triboelectric self-powered smart home system[J]. ACS Nano, 2022, 16(2): 3341-3350.
CAI C, MO J, LU Y, et al. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment[J]. Nano Energy, 2021, 83: 105833.
ZHANG K, NI J, YANG K, et al. Security and privacy in smart city applications: Challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(1): 122-129.
LUO J, SHI X, CHEN P, et al. Strong and flame-retardant wood-based triboelectric nanogenerators toward self-powered building fire protection[J]. Materials Today Physics, 2022, 27: 100798.
相关作者
相关机构
微信公众号