古建筑木结构用材树种的DNA分子鉴定方法研究
DNA Methods for Identifying Wood in Ancient Timber Architecture
- 2023年37卷第3期 页码:12-18
DOI: 10.12326/j.2096-9694.2022220
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
2.中国林业科学研究院木材标本馆,北京 100091
3.国家林业和草原局木材标本资源库,北京 100091
扫 描 看 全 文
陆杨,焦立超,陈勇平等.古建筑木结构用材树种的DNA分子鉴定方法研究[J].木材科学与技术,2023,37(03):12-18.
LU Yang,JIAO Lichao,CHEN Yongping,et al.DNA Methods for Identifying Wood in Ancient Timber Architecture[J].Chinese Journal of Wood Science and Technology,2023,37(03):12-18.
古建筑木结构是自然生态与人类文明的重要载体。开展古建筑木构件树种鉴定研究,是古建筑木结构维修和保护的重要基础,同时也能加深了解古代先民掌握与利用木材资源的方式,进一步提高我们对古代人类文明的理解和认知。本研究以我国明十三陵和太庙古建筑的“楠木”构件为研究对象,通过构建包括古DNA提取、液相杂交捕获及数据分析在内的木材古DNA分子鉴定方法,实现了从古建筑木构件样品中获得高质量质体DNA基因组,覆盖度达到99.04%~99.94%,平均测序深度为17~110×;所获取DNA片段平均长度为90~138 bp,片段末端发生碱基替换,符合古DNA的典型特征;木构件样品树种鉴定为楠木(,Phoebe zhennan,)和细叶楠(,P. hui,)。本研究构建的古DNA分子鉴定方法将为古建筑木结构用材树种精准鉴定提供科技支撑。
The ancient timber architecture is an important carrier of natural ecology and human civilization. It is an important basis for the maintenance and protection of ancient timber architecture to identify wood species. Meanwhile, it also deepens the understanding of how ancient ancestors used wood resources and further improves our understanding and knowledge of ancient human civilization. In this study, the "Nanmu" components from the Ming Dynasty Tombs and the Imperial Ancestral Temple were taken as the research objects. The DNA identification method for ancient wood, including DNA extraction, hybridization capture, and DNA data analysis was established to retrieve the high-quality plasmid DNA genomes from ancient wood components, with coverage of 99.04%~99.94% and an average sequencing depth of 17~110×. The average length of the obtained DNA fragments was 90~138 bp. The base substitutions, which occurred at the end of the fragments were consistent with the typical characteristics of ancient DNA. The woodspecies of architecture components in this study were identified as ,Phoebe zhennan, and ,P. hui,. The ancient-DNA identification method system was constructed to provide scientific and technic support for the accurate identification of timber species used in the ancient timber architecture.
古建筑木结构古DNA杂交捕获木材解剖
ancient architecturewood structureancient DNAhybridization capturewood anatomy
GB/T 50165—2020,古建筑木结构维护与加固技术标准[S].
Dormontt E E, Boner M, Braun B, et al. Forensic timber identification: It's time to integrate disciplines to combat illegal logging[J]. Biological Conservation, 2015, 191: 790-798.
JIAO L C, LUY, HE T, et al. DNA barcoding for wood identification: global review of the last decade and future perspective[J]. IAWA Journal, 2020, 41 (4):620-643.
JIAO L C, LIU X L, JIANG X M, et al. Extraction and amplification of DNA from aged and archaeological Populus euphratica wood for species identification[J]. Holzforschung, 2015, 69, 925-931.
Wagner S, Lagane F, Seguin-Orlando A, et al. High-Throughput DNA sequencing of ancient wood[J]. Molecular Ecology, 2018, 27, 1138-1154.
FU Q M, Meyer M, GAO X, et al. DNA analysis of an early modern human from Tianyuan Cave, China[J]. The Proceedings of the National Academy of Sciences, 2013, 110(6): 2223-2227.
Orlando L, Gilbert M, Willerslev E. Reconstructing ancient genomes and epigenomes[J]. Nature Reviews Genetics, 2015, 16(7): 395-408.
WANG C, Yeh H, Popov A N, et al. The genomic formation of human populations in East Asia[J]. Nature, 2021, 591: 413-419.
JIAO L C, LU Y, ZHANG M, et al. Ancient plastid genomes solve the tree species mystery of the imperial wood “Nanmu” in the Forbidden City, the largest existing wooden palace complex in the world[J]. Plants People Planet, 2022, 4(6): 696-709.
Reimer P J. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 CAL kBP)[J]. Radiocarbon, 2020, 62, 725-757.
GB/T 29894—2013,《木材鉴别方法通则》[S].
LU Y, JIANG L C, HE T, et al. An optimized DNA extraction protocol for wood DNA barcoding of Pterocarpus erinaceus[J]. IAWA Journal, 2020, 41, 644-659.
Rohland N, Glocke I, Aximu-Petri A, et al. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing[J]. Nature Protocols, 2018, 13, 2447-2461.
Schubert M, Ermini L, Sarkissian C D, et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX[J]. Nature Protocols, 2014, 9, 1056-1082.
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging[J]. BMC Research Notes, 2016, 9, 88.
LI H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25, 2078-2079.
Jónsson H, Ginolhac A, Schubert M, et al. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters[J]. Bioinformatics, 2013, 29, 1682-1684.
Ronquist F, Teslenko M, Van Der Mark P, et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61, 539-542.
Cruz‐Dávalos D I, Llamas B, Gaunitz C, et al. Experimental conditions improving in‐solution target enrichment for ancient DNA[J]. Molecular Ecology Resources, 2017, 17(3): 508-522.
相关作者
相关机构
微信公众号