木材/金属-有机框架复合材料研究进展
Research Progress of Wood/Metal-Organic Frameworks Composites
- 2023年37卷第1期 页码:8-17
DOI: 10.12326/j.2096-9694.2022205
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
扫 描 看 全 文
王鑫,管浩,戴鑫建等.木材/金属-有机框架复合材料研究进展[J].木材科学与技术,2023,37(01):8-17.
WANG Xin,GUAN Hao,DAI Xinjian,et al.Research Progress of Wood/Metal-Organic Frameworks Composites[J].Chinese Journal of Wood Science and Technology,2023,37(01):8-17.
金属-有机框架(metal-organic frameworks,MOFs)是一类由金属离子或团簇与有机配体组成的晶体材料,因其具有结构和功能多样性而备受关注。然而,MOFs的粉末结晶状态极大限制了其实际应用。木材作为一种天然多孔材料,具有有序的孔道结构、优良的力学性能和丰富的活性基团,是固定粉末状MOFs的理想载体。将MOFs与多孔木材复合构筑木材/MOFs复合材料,可实现MOFs功能特性与木材结构特点的有效结合,为拓展MOFs的应用潜力提供新途径。本文系统总结木材/MOFs复合材料的构筑策略,重点介绍木材/MOFs复合材料在液/气相吸附、催化、电化学储能等领域的最新应用进展,分析当前木材/MOFs复合材料研究中存在的问题以及未来的研究重点。
Metal-organic frameworks (MOFs) are an emerging crystal material consisting of inorganic metal ions/clusters and organic ligands, which have attracted much attention due to the structural and functional diversities. However, MOFs mainly exists in the form of powder and crystal because of their intrinsic crystalline nature, severely restricting the practical applications. As a naturally porous material, wood possesses an ordered pore structure, excellent mechanical properties, and rich active groups, making it an ideal carrier for the effective immobilization of powdery MOFs. Integrating MOFs with porous wood to form wood/MOFs composites can effectively combine the functional characteristic of MOFs and the structural features of wood, providing a new avenue to expand the application of MOFs. In this review, current state-of-the-art fabrication methods of wood/MOFs composites are systematically summarized. The latest applications in liquid/gas adsorption, catalysis, electrochemical energy storage, and other emerging fields are highlighted. In addition, current existing problems and future research directions in the field of wood/MOFs composites for advanced functional materials are discussed.
木材金属-有机框架复合材料载体
woodmetal-organic frameworkscompositecarrier
FU H, OU P F, ZHU J, et al. Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles[J]. ACS Applied Nano Materials, 2019, 2(12): 7626-7636.
刘洪宪, 刘宁宁, 鲁敏, 等. 金属-有机骨架材料对废水中重金属离子吸附的研究进展[J]. 东北电力大学学报, 2019, 39(6): 58-66.
LIU H X, LIU N N, LU M, et al. Research progress of metal-organic frameworks in the adsorption removal of heavy metal ions from wastewater[J]. Journal of Northeast Electric Power University, 2019, 39(6): 58-66.
Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042.
Park K S, Ni Z, Côté A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191.
ZHAO D, YUAN D Q, SUN D F, et al. Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows[J]. Journal of the American Chemical Society, 2009, 131(26): 9186-9188.
XUE D X, WANG Q, BAI J F. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties[J]. Coordination Chemistry Reviews, 2019, 378: 2-16.
Abánades Lázaro I, Forgan R S. Application of zirconium MOFs in drug delivery and biomedicine[J]. Coordination Chemistry Reviews, 2019, 380: 230-259.
YAO S, CHI J J, WANG Y T, et al. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing[J]. Advanced Healthcare Materials, 2021, 10(12): e2100056.
冯爱玲, 王彦妮, 徐榕, 等. 多功能MOFs基复合材料研究进展[J]. 功能材料, 2018, 49(11): 11061-11070.
FENG A L, WANG Y N, XU R, et al. Progress of multifunctional metal-organic framework composites[J]. Journal of Functional Materials, 2018, 49(11): 11061-11070.
王杨鑫, 邓强, 李成贵, 等. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 216-225.
WANG Y X, DENG Q, LI C G, et al. Research progress on preparation and application of polysaccharides-metal organic frameworks hybrid aerogels[J]. Materials Reports, 2022, 36(4): 216-225.
陈宁, 王超, 窦云, 等. 金属有机框架/纤维素纸复合材料的合成及应用研究进展[J]. 中国造纸, 2023, 42(1): 121-130.
CHEN N, WANG C, DOU Y, et al. Research progress on synthesis and application of metal-organic frameworks/cellulose paper composites[J]. China Pulp & Paper, 2023, 42(1): 121-130.
TU K K, DING Y, Keplinger T. Review on design strategies and applications of metal-organic framework-cellulose composites[J]. Carbohydrate Polymers, 2022, 291: 119539.
朱刚, 李辉, 强明礼, 等. 金属-有机骨架在生物质及其衍生化学品中的应用[J]. 林业工程学报, 2021, 6(6): 23-34.
ZHU G, LI H, QIANG M L, et al. Application and research progress of metal-organic framework materials in biomass and its derived chemicals[J]. Journal of Forestry Engineering, 2021, 6(6): 23-34.
MA X F, XIONG Y, LIU Y S, et al. When MOFs meet wood: from opportunities toward applications[J]. Chem, 2022, 8(9): 2342-2361.
GUO R X, CAI X H, LIU H W, et al. In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal[J]. Environmental Science & Technology, 2019, 53(5): 2705-2712.
ZHANG X F, WANG Z G, SONG L, et al. In situ growth of ZIF-8 within wood channels for water pollutants removal[J]. Separation and Purification Technology, 2021, 266: 118527.
YOU D Y, ZHAO Y J, YANG W T, et al. Metal-organic framework-based wood aerogel for effective removal of micro/nano plastics[J]. Chemical Research in Chinese Universities, 2022, 38(1): 186-191.
CHEN G Y, HE S, SHI G B, et al. In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water[J]. Chemical Engineering Journal, 2021, 423: 130184.
汪心娉, 余璟, 朱瑞琦, 等. 低共熔溶剂选择性溶解木质纤维原料的研究进展[J]. 中国造纸学报, 2021, 36(2): 79-86.
WANG X P, YU J, ZHU R Q, et al. Research progress on selective dissolution of lignocellulosic materials in deep eutectic solvents[J]. Transactions of China Pulp and Paper, 2021, 36(2): 79-86.
WANG Z G, YIN F Y, ZHANG X F, et al. Delignified wood filter functionalized with metal-organic frameworks for high-efficiency air filtration[J]. Separation and Purification Technology, 2022, 293: 121095.
WU M B, ZHANG C, XIE Y, et al. Janus metal-organic frameworks/wood aerogel composites for boosting catalytic performance by Le Chatelier’s principle[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51039-51047.
WANG S N, WANG C, ZHOU Q. Strong foam-like composites from highly mesoporous wood and metal-organic frameworks for efficient CO2 capture[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29949-29959.
TU K K, Puertolas B, Adobes-Vidal M, et al. Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties[J]. Advanced Science, 2020, 7(7): 1902897.
HUANG G S, HUANG C, TAO Y L, et al. Localized heating driven selective growth of metal-organic frameworks (MOFs) in wood: A novel synthetic strategy for significantly enhancing MOF loadings in wood[J]. Applied Surface Science, 2021, 564: 150325.
MA X F, ZHAO S Y, TIAN Z W, et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration[J]. Chemical Engineering Journal, 2022, 446: 136851.
CUI Z, WU J, XU Y, et al. In-situ growth of polyoxometalate-based metal-organic frameworks on wood as a promising dual-function filter for effective hazardous dye and iodine capture[J]. Chemical Engineering Journal, 2023, 451: 138371.
HE S M, CHEN C J, CHEN G, et al. High-performance, scalable wood-based filtration device with a reversed-tree design[J]. Chemistry of Materials, 2020, 32(5): 1887-1895.
ZHU X, LI M, ZHANG X-F, et al. Delignified wood supported MIL-100(Fe) for fast adsorption removal of tetracycline[J]. Microporous and Mesoporous Materials, 2022, 342: 112124.
GU Y, WANG Y C, LI H M, et al. Fabrication of hierarchically porous NH2-MIL-53/wood-carbon hybrid membrane for highly effective and selective sequestration of Pb2+[J]. Chemical Engineering Journal, 2020, 387: 124141.
ZHU X Y, FAN Z X, ZHANG X F, et al. Metal-organic frameworks decorated wood aerogels for efficient particulate matter removal[J]. Journal of Colloid and Interface Science, 2023, 629: 182-188.
QIN H F, ZHOU Y, HUANG Q Y, et al. Metal organic framework (MOF)/wood derived multi-cylinders high-power 3D reactor[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5460-5468.
TU K K, Büchele S, Mitchell S, et al. Natural wood-based catalytic membrane microreactors for continuous hydrogen generation[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 8417-8426.
ZHANG W J, LI M, ZHONG L, et al. A family of MOFs@wood-derived hierarchical porous composites as freestanding thick electrodes of solid supercapacitors with enhanced areal capacitances and energy densities[J]. Materials Today Energy, 2022, 24: 100951.
SONG P, CHEN C X, SHEN X P, et al. Metal-organic frameworks-derived carbon modified wood carbon monoliths as three-dimensional self-supported electrodes with boosted electrochemical energy storage performance[J]. Journal of Colloid and Interface Science, 2022, 620: 376-387.
SU M L, ZHANG R, LI H R, et al. In situ deposition of MOF199 onto hierarchical structures of bamboo and wood and their antibacterial properties[J]. RSC Advances, 2019, 9(69): 40277-40285.
XIONG Y, XU L L, YANG C X, et al. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption[J]. Journal of Materials Chemistry A, 2020, 8(36): 18863-18871.
XU L L, XIONG Y, DANG B K, et al. In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties[J]. Materials & Design, 2019, 182: 108006.
相关作者
相关机构
微信公众号