基于激光线阵相机的家具板件三维尺寸在线测量技术
Online Three-Dimensional Measurement Technology for Furniture Panels based on Laser Line-Array Camera
- 2023年37卷第4期 页码:13-19
DOI: 10.12326/j.2096-9694.2022201
扫 描 看 全 文
1.南京林业大学家居与工业设计学院,江苏南京 210037
2.德华兔宝宝装饰新材股份有限公司,浙江湖州 313200
扫 描 看 全 文
李荣荣,杨凡,赵书昌等.基于激光线阵相机的家具板件三维尺寸在线测量技术[J].木材科学与技术,2023,37(04):13-19.
LI Rongrong,YANG Fan,ZHAO Shuchang,et al.Online Three-Dimensional Measurement Technology for Furniture Panels based on Laser Line-Array Camera[J].Chinese Journal of Wood Science and Technology,2023,37(04):13-19.
机器视觉技术可实现物体尺寸的快速、非接触式检测,替代人工测量家具板件尺寸,解决测量效率低、连续性差等问题。本研究基于激光线阵相机与线结构光测量技术,构建一种适用于家具板件的三维尺寸在线测量系统,并分析该系统的测量精度与效率。家具板件在传送装置上以300 mm/s的速度作匀速运动,经过650 nm激光器照射的激光三角平面时,互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)传感器对家具板件表面反射的激光进行成像;使用锯齿靶标法标定,应用机器视觉软件Halcon读取相机标定文件和激光线阵相机生成的家具板件信息图像,经过图像处理,完成家具板件三维尺寸测量。结果表明:系统测量的板件厚度、宽度和长度,相对人工测量结果,最大偏差率分别为3.6%、0.5%和0.1%;对照QB/T 4452—2013《木家具 极限与配合》标准要求,测量的厚度最大差值小于,IT,15级公差值(,<,0.70 mm),宽度最大差值小于,IT,14级公差值(,<,1.00 mm),长度最大差值小于,IT,12级公差值(,<,0.90 mm)。单件测量用时由人工测量的30.1 s缩短至5.5 s,表明系统的测量精度与效率优势。
Machine vision technology can realize rapid and non-contact detection of object size, and can replace the manual measurement method for furniture panels, so as to improve the efficiency, increase the detection speed, smooth the production continuity, and so on. In this study, a laser line-array camera combined with line-structured light measurement technology was used to build an online measurement system for furniture panels. The measurement accuracy and efficiency of machine vision technology were studied and analyzed. When the furniture panel moves at 300 mm/s uniformly on the transmission device and passes through the laser triangle plane irradiated by the 650 nm laser, the LASER reflected on the surface of the furniture panel is imitated by the CMOS sensor. After calibration with sawtooth target method, machine vision software Halcon is used to read the camera calibration file. The images of furniture panels are generated by the laser camera. After image processing technology, the dimensions of furniture panels in three directions of thickness, width, and length are detected respectively. The high-precision measurement of the furniture panel’s three dimension is realized. The results showed that the maximum deviation ratios of thickness, width, and length of furniture panels measured by the system compared to manual measurement were 3.6%, 0.5% and 0.1%, respectively. The maximum difference in thickness was less than the ,IT,15 level tolerance value (,<,0.70 mm), the maximum difference in width was less than the ,IT,14 level tolerance value (,<,1.00 mm), and the maximum difference in length was less than the ,IT,12 level tolerance value (,<,0.90 mm), according to the industry standard QB/T 4452—2013 ,Wood furniture Limits and fits,. The measuring time for a single piece was shortened from 30.1 seconds to 5.5 seconds, indicating the advantages of good measurement accuracy and efficiency of the system.
家具板件三维尺寸测量机器视觉线结构光相机标定图像处理
three-dimensional measurement for furniture panelsmachine visionlinear structure lightcamera calibrationimage processing
邓斌攸, 潘云峰, 池志强, 等. 基于机器视觉的家具板件尺寸在线测量系统 [J]. 木材科学与技术, 2021, 35(2): 63-70.
DENG B Y, PAN Y F, CHI Z Q, et al. A machine vision system for measuring dimensions of furniture panels [J]. Chinese Journal of Wood Science and Technology, 2021, 35(2): 63-70.
龚建钊, 华城, 周恒, 等. 基于机器视觉的定制家居板件在线尺寸检测系统研究[J]. 中国人造板, 2020, 27(1): 20-22, 27.
GONG J Z, HUA C, ZHOU H, et al. Key technology of on-line size detection system of customized furniture based on mechanical vision [J]. China Wood-Based Panels, 2020, 27(1): 20-22, 27.
张未, 吕志娟, 徐兆军,等. 基于激光三角测距的锯材表面缺陷检测方法 [J]. 林业工程学报, 2017, 2(6): 116-120.
ZHANG M, LYU Z J, XU Z J, et al. Detecting method for surface defect of swan timber based on laser triangulation [J]. Journal of Forestry Engineering, 2017, 2(6): 116-120.
贾新宇, 江朝晖, 李娟,等. 基于图像测量的毛竹笋高生长在线监测 [J]. 林业工程学报, 2021, 6(4): 134-139.
JIA X Y, JIANG C H, LI J, et al. On-line monitoring of bamboo shoot growth height based on image measurement [J]. Journal of Forestry Engineering, 2021, 6(4): 134-139.
李晖, 吴佳宁, 苑玮琦,等. 基于视觉显著性的木板实时分类方法研究 [J]. 仪器仪表学报, 2018, 39(12): 237-244.
LI H, WU J N, YUAN W Q, et al. Real-time classification of wood based on visual significance [J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 237-244.
封维忠, 王建文, 滕辉, 等. 板材尺寸自动检测仪的研究[J]. 林业科学, 2008, 44(2): 165-168.
FENG W Z, WANG J W, TENG H, et al. An instrument for auto-measuring the width and length of wood board[J]. Scientia Silvae Sinicae, 2008, 44(2): 165-168.
颜志强, 曾钦志, 张巧玲. 机器视觉技术在木材工业中的应用研究概况[J]. 木材加工机械, 2013, 24(4): 55-59.
YAN Z Q, ZENG Q Z, ZHANG Q L. Overview on research and application of machine vision technology in wood industry[J]. Wood Processing Machinery, 2013, 24(4): 55-59.
陈炜文. 基于机器视觉木材表面缺陷图像分割研究 [D]. 广州: 华南农业大学, 2016.
CHEN W W. Research on wood surface defect image segmentation based on computer vision [D]. Guangzhou: South China Agricultural University, 2016.
刘风华, 谢国贤, 肖浩南,等. 基于YOLO v5算法的板材质量视觉检测技术研究 [J]. 现代信息科技, 2021, 5(9): 149-153.
LIU F H, XIE G X, XIAO H N, et al. Research on visual inspection technology of plate quality based on YOLO V5 algorithm[J]. Modern Information Technology, 2021, 5(9): 149-153.
李执, 闫坤, 傅琪, 等. 基于机器视觉的金属工件尺寸测量[J]. 仪表技术与传感器, 2022(3): 92-97.
LI Z, YAN K, FU Q, et al. Dimension measurement of metal workpiece based on machine vision[J]. Instrument Technique and Sensor, 2022(3): 92-97.
王锦亚, 李振业, 倪超. 基于机器视觉的实木地板在线分色识别算法[J]. 林业工程学报, 2021, 6(5): 135-139.
WANG J Y, LI Z Y, NI C. Machine vision algorithms of online color recognition and classification for solid wood flooring products [J]. Journal of Forestry Engineering, 2021, 6(5): 135-139.
郑如新, 孙青云, 肖国栋. 基于机器视觉的工件尺寸测量研究[J]. 电子测量技术, 2021, 44(16): 110-115.
ZHENG R X, SUN Q Y, XIAO G D. Research on workpiece dimension measurement based on machine vision[J]. Electronic Measurement Technology, 2021, 44(16): 110-115.
张真维, 赵鹏, 韩金城. 基于双目视觉的树木高度测量方法研究[J]. 林业工程学报, 2021, 6(6): 156-164.
ZHANG Z W, ZHAO P, HAN J C. Research on measurement method of single tree height using binocular vision[J]. Journal of Forestry Engineering, 2021, 6(6): 156-164.
GUO X, SHI Z, YU B, et al. 3D measurement of gears based on a line structured light sensor [J]. Precision Engineering, 2020, 61: 160-169.
CATALUCCI S, SENIN N, SIMS-WATERHOUSE D, et al. Measurement of complex freeform additively manufactured parts by structured light and photogrammetry [J]. Measurement, 2020, 164: 108081.
许家旺, 邹光明, 侯宇, 等. 基于双目视觉的纸箱识别与规格尺寸确认研究 [J]. 传感器与微系统, 2023, 42(8): 35-38.
XU J W, ZHOU G M, HOU Y, et al. Research on carton recognition and size confirmation based on binocular vision [J]. Transducer and Microsystem Technologies, 2023, 42(8): 35-38.
PENG T, ZHANG Z J, CHEN F S, et al. Dimension measurement and key point detection of boxes through laser-triangulation and deep learning-based techniques[J]. Applied Sciences, 2019, 10(1): 26.
WANG S, WANG H, ZHOU Y, et al. Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching [J]. Measurement, 2021, 169: 108362.
ZHONG C Q, GAO Z, WANG X, et al. Structured light three-dimensional measurement based on machine learning[J]. Sensors, 2019, 19(14): 3229.
乔俊峰, 周沅桢, 王永, 等. 三维激光扫描测体积技术及其应用进展[J]. 激光与红外, 2021, 51(9): 1115-1122.
QIAO J F, ZHOU Y Z, WANG Y, et al. Advances in 3D laser scanning volume measurement technology and application[J]. Laser & Infrared, 2021, 51(9): 1115-1122.
洪梓铭, 艾青松, 陈昆. 基于光纤激光的高精度三维视觉测量技术[J]. 红外与激光工程, 2018, 47(8): 89-96.
HONG Z M, AI Q S, CHEN K. High precise 3D visual measurement based on fiber laser[J]. Infrared and Laser Engineering, 2018, 47(8): 89-96.
张曦, 张健. 线结构光标定方法综述[J]. 激光与光电子学进展, 2018, 55(2): 7-17.
ZHANG XI, ZHANG J. Summary on calibration method of line: Structured light [J]. Laser & Optoelectronics Progress, 2018, 55(2): 7-17.
马腾, 赵德安, 李长峰, 等. 基于片光模型的三维标定方法研究[J]. 软件导刊, 2021, 20(7): 81-85.
MA T, ZHAO D A, LI C F, et al. Research on 3D calibration method based on sheet of light model[J]. Software Guide, 2021, 20(7): 81-85.
相关作者
相关机构
微信公众号