加压热处理对表层压缩木材变形回复及硬度的影响
Effect of Pressurized Heat Treatment on Set-Recovery and Hardness of Surface-Compressed Wood
- 2023年37卷第3期 页码:27-34
DOI: 10.12326/j.2096-9694.2022199
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
扫 描 看 全 文
向娥琳,黄荣凤.加压热处理对表层压缩木材变形回复及硬度的影响[J].木材科学与技术,2023,37(03):27-34.
XIANG Elin,HUANG Rongfeng.Effect of Pressurized Heat Treatment on Set-Recovery and Hardness of Surface-Compressed Wood[J].Chinese Journal of Wood Science and Technology,2023,37(03):27-34.
木材表层压缩和加压热处理相结合是一种环保、低成本的物理改性方法,能显著提高低密度木材的硬度和尺寸稳定性。本研究对毛白杨(,Populus tomentosa,)边材试样进行表层压缩并形成干燥变定的压缩木,再用180 °C、0.1~0.7 MPa加压热处理永久固定压缩变形,分析表层压缩和蒸汽压力对压缩木压缩变形回复、硬度以及细胞壁微力学性能的影响规律。与未压缩材相比,当压缩率为20%时,压缩层的平均密度、表面硬度以及木材硬度分别提高了98%、70%、55%。蒸汽压力对固定压缩变形的效果极显著。当蒸汽压力为0.5 MPa时,吸湿状态下压缩变形完全不回复,吸水变形回复率降低至2.64%;当蒸汽压力增加至0.7 MPa,98%以上的压缩变形得到永久固定。随着蒸汽压力升高,表面硬度和木材硬度均呈先降低后增加的趋势,但差异在统计学上不显著。当蒸汽压力高于0.5 MPa时,纳米压痕测定的细胞壁弹性模量和硬度显著增加。
The combination of surface compression and pressurized heat treatment is an environment friendly physical method for wood modification at a low cost, which significantly improve the hardness and dimensional stability of low-density wood. ,Populus tomentosa, sapwood was subjected to surface compression. The deformation produced was temporarily fixed after drying. Then, the pressurized heat treatment at 180 °C and 0.1~0.7 MPa was used to permanently fix the compressive deformation. The effects of surface compression and steam pressure on the set-recovery, hardness, and micromechanical behavior of poplar wood were investigated. Compared with uncompressed wood, when the compression ratio was 20%, the average density of the compressed layer, surface hardness, and hardness of surface-compressed wood (SC wood) were increased by about 98%, 70%, and 55%, respectively. The effect of steam pressure on the fixed compressive deformation was extremely significant. The pressurized heat treatment at 0.5 MPa blocks the compressive deformation to rebound under moisture absorption, while a reduction in set-recovery was 2.64% by immersion in water. When the pressurized heat treatment was at 0.7 MPa, it permanently fix the compressive deformation to 98%. With the increase of the steam pressure, the surface hardness and hardness decreased first and then increased, but the difference was not statistically significant. The pressurized heat treatment with a pressure of 0.5 MPa significantly improve the elasticity modulus and hardness of cell walls measured by nanoindentation.
木材表层压缩加压热处理变形回复硬度
woodsurface compressionpressurized heat treatmentset-recoveryhardness
高志强, 张耀明, 吴忠其, 等. 加压热处理对表层压缩杨木变形回弹的影响[J]. 木材工业, 2017, 31(2): 24-28.
GAO Z Q, ZHANG Y M, WU Z Q, et al. Effect of pressurized heat treatment on spring-back of surface compressed poplar wood[J]. China Wood Industry, 2017, 31(2): 24-28.
Laine K, Rautkari L, Hughes M, et al. Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment[J]. European Journal of Wood and Wood Products, 2013, 71(1): 17-23.
Norimoto M. Large compressive deformation in wood[J]. Mokuzai Gakkaishi, 1993, 39(8): 867-874.
Iida I, Norimoto M. Recovery of compression set[J]. Mokuzai Gakkaishi, 1987, 33(12): 929-933.
Inoue M, Norimoto M, Tanahashi M, et al. Steam or heat fixation of compressed wood[J]. Wood and Fiber Science, 1993, 25(3): 224-235.
Inoue M, Sekino N, Morooka T, et al. Fixation of compressive deformation in wood by pre-steaming[J]. Journal of Tropical Forest Science, 2008, 20(4): 273-281.
Navi P, Girardet F. Effects of thermo-hydro-mechanical treatment on the structure and properties of wood[J]. Holzforschung, 2000, 54(3): 287-293.
XIANG E L, FENG S H, YANG S M, et al. Sandwich compression of wood: effect of superheated steam treatment on sandwich compression fixation and its mechanisms[J]. Wood Science and Technology, 2020, 54(6): 1529-1549.
刘君良, 王玉秋. 酚醛树脂处理杨木、杉木尺寸稳定性分析[J]. 木材工业, 2004, 18(6): 5-8.
LIU J L, WANG Y Q. Dimensional stability of surface-compressed wood by PF resin treatment[J]. China Wood Industry, 2004, 18(6): 5-8.
柴宇博, 刘君良, 王飞. 两种预处理方法对杨木压缩变形的固定作用及性能影响[J]. 木材加工机械, 2016, 27(5): 16-19.
CHAI Y B, LIU J L, WANG F. Effects of different modification methods on the fixation of compression and properties of plantation poplar wood[J]. Wood Processing Machinery, 2016, 27(5):16-19.
Inoue M, Minato K, Norimoto M. Permanent fixation of compressive deformation of wood by crosslinking[J]. Mukuzai Gakkaishi, 1994, 40(9): 931-936.
方桂珍, 崔永志, 常德龙. 多元羧酸类化合物对木材大压缩量变形的固定作用[J]. 木材工业, 1998, 12(2): 16-19.
FANG G Z, CUI Y Z, CHANG D. Fixation of heavy compression deformation of wood treated with polycarboxylic acids[J]. China Wood Industry, 1998, 12(2): 16-19.
丁涛, 顾炼百, 蔡家斌. 热处理对木材吸湿特性及尺寸稳定性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(2): 143-147.
DING T, GU L B, CAI J B. Effects of heat treatment on the moisture adsorption characteristic and dimensional stability of wood[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(2): 143-147.
XIANG E L, LI J, HUANG R F, et al. Effect of superheated steam pressure on the physical and mechanical properties of sandwich-densified wood[J].Wood Science and Technology, 2022, 56(3): 899-919.
Laine K, Segerholm K, Wålinder M, et al. Wood densification and thermal modification: hardness, set-recovery and micromorphology[J].Wood Science and Technology, 2016, 50(5): 883-894.
GAO Z Q, HUANG R F, CHANG J M, et al. Effects of pressurized superheated-steam heat treatment on set recovery and mechanical properties of surface-compressed wood[J]. BioResources, 2019, 14(1): 1718-1730.
Inoue M, Kodama J, Yamamoto Y, et al. Dimensional stabilization of compressed wood using high-frequency heating II[J]. Mokuzai Gakkaishi, 2006, 52(3): 173-177.
Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research, 1992, 7(6): 1564-1583.
TU D Y, SU X H, ZHANG T T, et al. Thermo-mechanical densification of Populus tomentosa var. tomentosa with low moisture content[J]. BioResources, 2014, 9(3): 3846-3856.
Rautkari L, Honkanen J, Hill C A S, et al. Mechanical and physical properties of thermally modified Scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180 ℃[J].European Journal of Wood and Wood Products, 2014, 72(1): 33-41.
DING T, GU L B, LI T. Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber[J].European Journal of Wood and Wood Products, 2011, 69(1): 121-126.
XING D, LI J, WANG X Z, et al. In situ measurement of heat-treated wood cell wall at elevated temperature by nanoindentation[J]. Industrial Crops and Products, 2016, 87: 142-149.
MENG Y J, XIA Y Z, YOUNG T M, et al. Viscoelasticity of wood cell walls with different moisture content as measured by nanoindentation[J]. RSC Advances, 2015, 5(59): 47538-47547.
王喆, 孙柏玲, 柴宇博, 等. 利用红外成像和纳米压痕测试技术研究热处理落叶松管胞性能[J]. 林业工程学报, 2022, 7(3): 67-72.
WANG Z, SUN B L, CHAI Y B, et al. Study on properties of heat-treated larch tracheid using infrared imaging and nanoindentation test[J]. Journal of Forestry Engineering, 2022, 7(3):67-72.
相关作者
相关机构
微信公众号