木材树种批量检验抽样方案的研究
Study on Sampling Scheme of Large Batch Wood for Inspection
- 2023年37卷第3期 页码:51-57
DOI: 10.12326/j.2096-9694.2022182
扫 描 看 全 文
1.西南林业大学材料科学与工程学院,云南昆明 650224
2.西南林业大学数理学院,云南昆明 650224
扫 描 看 全 文
陈松阳,王宪,王辉等.木材树种批量检验抽样方案的研究[J].木材科学与技术,2023,37(03):51-57.
CHEN Songyang,WANG Xian,WANG Hui,et al.Study on Sampling Scheme of Large Batch Wood for Inspection[J].Chinese Journal of Wood Science and Technology,2023,37(03):51-57.
批量木材检验既要保证合理的精度,又要考虑检验人员的工作强度,因此研究批量木材检验的抽样方案具有重要意义。为制定按批量百分比分配的随机抽样方案,根据木材分类方法,整合历史抽样数据,使用MATLAB拟合并建立回归方程。在随机抽样方案的基础上研究复杂抽样的设计效应(design effect,deff),并增加了放宽和加严的规则。采用分层抽样模式,根据不同分类方法设定检验批次,制定了单一树种类或多树种类分组的随机抽样、多树种类未分组的随机抽样和现场无法判断样本信息的随机抽样三种方案。所有研究方案与现行抽样方案的对比和实际验证,在参数区间和执行方面均具有可行性,加快了批量木材抽样中样本量的计算。本研究对于木材现场检验具有更好的适用性,可以提高木材检验工作的效率。
Wood inspection of large batch considers the inspectors' workload in addition to ensuring reasonable accuracy. Therefore, it is crucial to research the wood sampling plan for large batches. The historical sample data were combined, in order to create a random sampling scheme allotted by the batch percentage using the wood categorization method. Then MATLAB was used to fit and establish a regression equation. Based on the random sampling method, the design effect (design effect, deff) of complicated sampling was explored. The relaxed and strict constraints were implemented. Three different sampling schemes were developed using the stratified sampling mode, including single tree species or multiple tree species grouped random sampling, ungrouped random sampling of multiple tree species, and random sampling of sample information which cannot be judged on site. Inspection batches were set according to various classification methods. The effectiveness of each research plan was tested in practice and compared to the current sampling plan. Three exploratory sampling schemes all speed up the calculation of sample size in batch wood sampling and are viable in terms of parameter interval and execution. This study is applicable to wood on-site inspection, which increase wood inspection's efficacy.
木材检验批量抽样方案样本量
wood inspectionlotsampling schemesample size
谢雪钦. 木材运输现场检查工作若干问题探讨[J]. 农业与技术, 2014, 34(6): 253-254.
XIE X Q. Discussion on some problems of on-site inspection of wood transportation[J]. Agriculture and Technology, 2014, 34(6): 253-254.
白勇涛. 试论如何加强木材运输检查、监督确保森林资源的安全[J]. 农民致富之友, 2017(11): 222.
张璇, 赵静, 丁文兴. 大数据背景下产品质量抽样调查的样本量设计[J]. 系统科学与数学, 2022, 42(1): 133-140.
ZHANG X, ZHAO J, DING W X. Sample size design of product quality sampling survey under the background of big data[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(1): 133-140.
石良红. 论如何加强木材运输检查、监督机制以确保森林资源安全[J]. 科技风, 2016(1): 275.
罗渡霖. 做好木材运输检查监督工作的实践策略与研究[J]. 农业开发与装备, 2020(4): 69-70.
LUO D L. Practical strategy and research on doing well the inspection and supervision of wood transportation[J]. Agricultural Development & Equipments, 2020(4): 69-70.
陈开团. 木材流通现场检查监督中亟待解决的若干标准化技术问题[J]. 林业资源管理, 2005(4): 17-20.
CHEN K T. Some standardization technology problems demanding prompt solution in the local wood circulation inspection and supervision[J]. Forest Resources Management, 2005(4): 17-20.
邵志强. 抽样调查中样本容量的确定方法[J]. 统计与决策, 2012(22): 12-14.
张勇. 样本量并非“多多益善”——谈抽样调查中科学确定样本量[J]. 中国统计, 2008(5): 45-47.
李益. 抽样调查中样本量n的确定方法[J]. 市场研究, 2005(12): 54-57.
LI Y. Determination method of sample size n in sampling survey[J]. Marketing Research, 2005(12): 54-57.
徐静远. 抽样调查中样本量的确定[J]. 统计与咨询, 2009(4): 43.
XU J Y. Determination of sample size in sampling survey[J]. Statistics and Consultation, 2009(4): 43.
张帼奋. 复杂抽样情形下样本量的确定[J]. 数学学习与研究, 2019(10): 121-122.
侯志强, 吴启富. 抽样调查样本量的确定[J]. 全国商情(经济理论研究), 2007(3): 108-109.
时涛. 抽样调查中样本量的科学确定[J]. 泰山医学院学报, 2010, 31(7): 531-533.
杜艾卿, 胡桂华, 陈新华, 等. 人口普查质量评估调查样本量的测算[J]. 西北人口, 2017, 38(1): 28-33, 43.
徐颖强, 陈仙亮, 曹栋波. 样本量为2的极小样本相容性检验方法[J]. 航空学报, 2018, 39(5): 221936.
XU Y Q, CHEN X L, CAO D B. Compatibility test method in minimal samples situation with two samples[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 221936.
张进华. 抽样调查中样本容量确定——以估计居民平均收入为例[J]. 中外企业家, 2020(18): 240.
陈永胜, 许志晶, 王文翠. 基于MATLAB的数学图形制作[J]. 鸡西大学学报, 2008, 8(4): 75-77.
CHEN Y S, XU Z J, WANG W C. Designing mathematics graphs based on MATLAB[J]. Journal of Jixi University, 2008, 8(4): 75-77.
沈小雨. 基于MATLAB的数学图形分析研究[J]. 黑河学院学报, 2018, 9(7): 205-206.
SHEN X Y. Mathematical graphics analysis based on MATLAB[J]. Journal of Heihe University, 2018, 9(7): 205-206.
袁建文, 李科研. 关于样本量计算方法的比较研究[J]. 统计与决策, 2013(1): 22-25.
P.RustagiKrishna. 在简单随机抽样中样本容量的确定[J]. 云南林业调查规划, 1984, 9(1): 46-47.
纪利霞. 抽样调查中样本容量设计[J]. 山西大同大学学报(自然科学版), 2009, 25(3): 7-8, 16.
JI L X. Designing of quantities in sample investigation[J]. Journal of Shanxi Datong University (Natural Science Edition), 2009, 25(3): 7-8, 16.
高宏. 森林资源抽样调查技术方法[J]. 林业勘查设计, 2018(4): 87-88.
GAO H. Technical methods of sampling survey of forest resources[J]. Forest Investigation Design, 2018(4): 87-88.
袁兴伟, 刘勇, 程家骅. 分层抽样误差分析及其在渔业统计中的应用[J]. 海洋渔业, 2011, 33(1): 116-120.
YUAN X W, LIU Y, CHENG J H. Error analysis on stratified sampling and its application in fishery statistics[J]. Marine Fisheries, 2011, 33(1): 116-120.
张俊霞, 孙平. 多目标分层等距复合抽样的应用研究[J]. 西部金融, 2013(9): 34-38.
李苑菱, 陈宗铸, 雷金睿, 等. 基于GIS海南森林资源调查抽样方法研究[J]. 热带林业, 2019, 47(1): 38-42.
LI Y L, CHEN Z Z, LEI J R, et al. Study on sampling method of forest resources survey in Hainan based on GIS[J]. Tropical Forestry, 2019, 47(1): 38-42.
相关文章
相关作者
相关机构
微信公众号