苏州艺圃乳鱼亭木构件材质与结构安全性评估
Assessment of Wood Quality and Structural Safety of Ruyu Pavilion in Suzhou Cultivation Garden
- 2023年37卷第2期 页码:53-58
DOI: 10.12326/j.2096-9694.2022140
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
2.故宫博物院,北京 100009
扫 描 看 全 文
陈勇平,赵鹏,杨红.苏州艺圃乳鱼亭木构件材质与结构安全性评估[J].木材科学与技术,2023,37(02):53-58.
CHEN Yongping,ZHAO Peng,YANG Hong.Assessment of Wood Quality and Structural Safety of Ruyu Pavilion in Suzhou Cultivation Garden[J].Chinese Journal of Wood Science and Technology,2023,37(02):53-58.
通过传统勘察和现代无损检测技术,对苏州艺圃乳鱼亭木构件用材树种和材质现状进行检测评估,并建立乳鱼亭的三维有限元模型。研究结果表明:乳鱼亭木构件用材树种主要为云杉(,Picea ,sp.)和杉木(,Cunninghamia ,sp.),仅少部分木构件存在开裂和腐朽问题,腐朽主要为柱底易受潮区域。按照GB 50005—2017《木结构设计标准》规定,云杉和杉木强度等级TC11-A进行设计值取值,并考虑实际使用年限、使用环境等情况进行折减,最终有限元分析结果显示,乳鱼亭竖向荷载主要由其4根角柱承担,整体结构的承载力仍能满足承载力极限状态要求。研究结果为乳鱼亭修缮加固处理提供基础数据支撑。
Through traditional surveys and modern non-destructive testing technology, the material quality of each component in the wood structure of the Ruyu Pavilion in Suzhou Cultivation Garden was evaluated. An three-dimension finite element model of the whole wood structure of Ruyu Pavilion was established. The results show that the wood species used in the wooden structure of Ruyu Pavilion are mainly spruce and Chinese fir. Only a small number of wood components in the wood structure of Ruyu Pavilion have cracking and decay problems, mainly in the areas prone to dampness at the bottom of the column. The design value is considered according to the strength grade TC11-A in the national standard GB 50005—2017 ,Standard for design of timber structures,. The actual service life, the use environment, and other conditions are also considered. Finally, the finite element analysis shows that the vertical load of the wooden structure of Ruyu Pavilion is mainly borne by four corner columns. The bearing performance of the overall structure meets the ultimate state requirements of bearing capacity. This paper provides basic data support for the subsequent repair and reinforcement treatment for Ruyu Pavilion.
乳鱼亭木结构安全分析用材树种材质现状三维有限元模型强度等级
Ruyu Pavilionwood structuresafety analysiswood specieswood statusthree-dimension finite element modelstrength grade
林源, 张文波. 苏州艺圃[M]. 北京: 中国建筑工业出版社, 2017.
谢嘉伟, 杨红, 徐飞, 等. 苏州艺圃乳鱼亭彩画分析及保护[J]. 自然与文化遗产研究, 2022, 7(1): 19-31.
XIE J W, YANG H, XU F, et al. Analysis and conservation of polychrome architectural paintings of the Ruyu pavilion in Suzhou cultivation garden[J]. Study on Natural and Cultural Heritage, 2022, 7(1): 19-31.
GB/T 29894—2013, 木材鉴别方法通则[S].
成俊卿, 杨家驹, 刘鹏, 等. 中国木材志[M]. 北京: 中国林业出版社, 1992.
陈允适. 古建筑木结构与木质文物保护[M]. 北京: 中国建筑工业出版社, 2007.
贺春玲, 朱朝东, 吴燕如. 木蜂属分类学研究概况[J]. 生物学通报, 2014, 49(7): 1-3.
贺春玲, 朱朝东, 吴燕如. 赤足木蜂的形态和筑巢行为[J]. 昆虫学报, 2017, 60(9): 1074-1082.
HE C L, ZHU C D, WU Y R. Morphology and nesting behavior of Xylocopa rufipes (Hymenoptera: Apidae)[J]. Acta Entomologica Sinica, 2017, 60(9): 1074-1082.
邓征. 天牛防治技术综述[J]. 现代园艺, 2019(1): 154-155.
白文钊, 张英俊. 家茸天牛生物学特征的研究[J]. 西北大学学报(自然科学版), 1999, 29(3): 255-258.
BAI W Z, ZHANG Y J. A biological study on Thichoferus campestris (Faldermann) Coleoptera: Cerambycidae[J]. Journal of Northwest University (Natural Science Edition), 1999, 29(3): 255-258.
余德才, 华正媛, 胡建军, 等. 家扁天牛生物学特性及防治技术[J]. 林业科学研究, 2008, 21(3): 370-373.
YU D C, HUA Z Y, HU J J, et al. Biological characteristics of Eurypoda antennata and its control measures[J]. Forest Research, 2008, 21(3): 370-373.
戴华国, 李小鹰, 张红兵. 白蚁分类方法述评[J]. 昆虫知识, 2004, 41(1): 20-23.
DAI H G, LI X Y, ZHANG H B. A review of the classification on Termites[J]. Entomological Knowledge, 2004, 41(1): 20-23.
张国庆. 浅谈北方古建筑白蚁的防治形势与预防策略[J]. 中国文物科学研究, 2019(4): 61-68.
ZHANG G Q. Discussion on termite control situation and prevention strategy in ancient buildings in North China[J]. China Cultural Heritage Scientific Research, 2019(4): 61-68.
陈勇平, 黎冬青, 李华, 等. 古建筑木构件现场分类及其无损检测技术[J]. 木材工业, 2011, 25(6): 41-43.
CHEN Y P, LI D Q, LI H, et al. Selecting nondestructive methods for testing wood components in historical buildings[J]. China Wood Industry, 2011, 25(6): 41-43.
张晓芳. 阻力仪在古建筑木构件勘查中的应用研究[D]. 北京: 北京林业大学, 2007.
RINN F. Resistographic inspection of construction timber, poles and trees[J]. Pacific Timber Engineering Conference, 1994(2): 468-478.
COSTELLO L, QUARLES S. Detection of wood decay in blue gum and elm: an evaluation of the resistograph® and the portable drill[J]. Arboriculture & Urban Forestry, 1999, 25(6): 311-318.
LIN C J, HUANG Y H, HUANG G S, et al. Detection of decay damage in iron-wood living trees by nondestructive techniques[J]. Journal of Wood Science, 2016, 62(1): 42-51.
段新芳, 黄荣凤. 古建筑木结构无损检测和保护技术研究进展[M]. 北京: 中国建材工业出版社, 2008.
朱磊, 张厚江, 孙燕良, 等. 基于应力波和微钻阻力的红松类木构件力学性能的无损检测[J]. 南京林业大学学报(自然科学版), 2013, 37(2): 156-158.
ZHU L, ZHANG H J, SUN Y L, et al. Mechanical properties non-destructive testing of wooden components of Korean pine based on stress wave and micro-drilling resistance[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2013, 37(2): 156-158.
YAMASAKI M, SASAKI Y. Determining Young’s modulus of timber on the basis of a strength database and stress wave propagation velocity I: an estimation method for Young’s modulus employing Monte Carlo simulation[J]. Journal of Wood Science, 2010, 56(4): 269-275.
YAMASAKI M, SASAKI Y, IIJIMA Y. Determining Young’s modulus of timber on the basis of a strength database and stress wave propagation velocity II: effect of the reference distribution database on the determination[J]. Journal of Wood Science, 2010, 56(5): 380-386.
TUMENJARGAL B, ISHIGURI F, TAKAHASHI Y, et al. Predicting the bending properties of Larix sibirica lumber using nondestructive-testing methods[J]. International Wood Products Journal, 2020, 11(3): 115-121.
LY/T 2382—2014, 应力波无损测试锯材动态弹性模量方法[S].
GB 50005—2017, 木结构设计标准[S].
相关作者
相关机构
微信公众号