蓝变木材基底可可球二孢菌丝复合材料的性能
Properties of Mycelium Composite Made of
Lasiodiplodia theobromae and Blue-Stained Wood Substrate- 2023年37卷第1期 页码:61-67
DOI: 10.12326/j.2096-9694.2022130
扫 描 看 全 文
1.华南农业大学材料与能源学院,广东广州 510642
扫 描 看 全 文
林晓莉,周海洋,高振忠等.蓝变木材基底可可球二孢菌丝复合材料的性能[J].木材科学与技术,2023,37(01):61-67.
LIN Xiaoli,ZHOU Haiyang,GAO Zhenzhong,et al.Properties of Mycelium Composite Made of Lasiodiplodia theobromae and Blue-Stained Wood Substrate[J].Chinese Journal of Wood Science and Technology,2023,37(01):61-67.
为了提高易蓝变木材的利用率,利用蓝变菌可可球二孢(,Lasiodiplodia theobromae,)和蓝变的欧洲赤松(,Pinus sylvestris,)、橡胶木(,Hevea brasiliensis,)碎料以及两者混合物制成的基底制备菌丝复合材料,并探讨含水率变化对菌丝复合材料性能的影响。结果表明:培养14 d后,三种基底表面均被菌丝覆盖,颜色显著变黑。增加板坯含水率促进了菌丝复合材料内发生木质素再聚合和美拉德反应,提高了菌丝复合材料的弯曲强度。蓝变欧洲赤松基底、蓝变橡胶木基底以及混合基底菌丝复合材料的弯曲强度分别提高了64%、221%和74%。与蓝变欧洲赤松基底相比,蓝变橡胶木基底更适合可可球二孢菌丝的生长,因此橡胶木基菌丝复合材料的弯曲强度更高,可以达到ANSI A208.1-2016“,Particleboard,”对轻质刨花板的弯曲强度要求。菌丝表面的疏水蛋白使材料表面接触角增大,疏水性增加,而板坯含水率的提高对材料的疏水性和耐水性有削弱作用。
In order to improve the utilization rate of blue stain wood, composite materials were developed by using the blue stain fungus ,Lasiodiplodia theobromae, and blue-stained wood shavings (Scots pine, rubberwood, and a mixture of both). The effect of the moisture content on the properties of mycelium composites was discussed. The results showed that after 14 days of culture, the surface of the substrates was covered by mycelia, and their colors turned black significantly. The increase in the moisture content of the mat promoted lignin repolymerization and Maillard reaction in the composites, improving the bending strength of the mycelium composites. The bending strengths of the mycelium composites with Scots pine substrate, rubberwood substrate, and mixed substrate were increased by 64%, 221%, and 74% respectively. Compared with the Scots pine, rubberwood was more suitable for the growth of ,Lasiodiplodia theobromae, and therefore the rubberwood-based mycelium composite showed higher bending strength compared with Scots pine-based mycelium composite. Rubberwood-based substrate mycelium composite meets the strength requirements for low density particleboard (ANSI A208.1-2016 ,Particleboard,). The hydrophobic protein on the surface of the mycelium increased the contact angle and hydrophobicity of the material, but the increase in the moisture content of the mat weakened the hydrophobicity and water resistance of the material. This study provided a new idea for the use of blue-stained wood.
可可球二孢蓝变木材菌丝复合材料弯曲强度
Lasiodiplodia theobromaeblue-stained woodmycelium compositebending strength
张雨, 徐峰, 罗建举. 木材蓝变色生物控制研究的现状[J]. 广西农业生物科学, 2007, 26(S1): 145-149.
ZHANG Y, XU F, LUO J J. Review of research on the biological control of wood blue-staining[J]. Journal of Guangxi Agricultural and Biological Science, 2007, 26(S1): 145-149.
谢桂军. 热处理马尾松木材霉变机制及纳米铜防霉技术研究[D]. 北京: 中国林业科学研究院, 2018.
闫薇, 史田田, 李少博, 等. 木竹碎料/菌丝体原位成型材料的性能[J]. 木材科学与技术, 2021, 35(4): 57-63.
YAN W, SHI T T, LI S B, et al. Properties of in-situ molding composites made of wood/bamboo splinter and Mycelium[J]. Chinese Journal of Wood Science and Technology, 2021, 35(4): 57-63.
Khoo S C, PENG W X, YANG Y, et al. Development of formaldehyde-free bio-board produced from mushroom mycelium and substrate waste[J]. Journal of Hazardous Materials, 2020, 400: 123296.
Elise E, Asbjørn S, Aurélie V W, et al. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting[J]. Construction and Building Materials, 2021, 283: 122732.
Jones M, Mautner A, Luenco S, et al. Engineered mycelium composite construction materials from fungal biorefineries: a critical review[J]. Materials & Design, 2020, 187: 108397.
张少军, 仲翔, 马尔妮, 等. 碱木质素与超支化聚丙烯酸酯乳液复配改性速生青杨的尺寸稳定性研究[J]. 北京林业大学学报, 2021, 43(11): 118-127.
LIU Y S, YU Z M, ZHANG Y, et al. Microbial dyeing—infection behavior and influence of Lasiodiplodia theobromae in poplar veneer[J]. Dyes and Pigments, 2020, 173: 107988.
Nashiruddin N I, Chua K S, Mansor A F, et al. Effect of growth factors on the production of mycelium-based biofoam[J]. Clean Technologies and Environmental Policy, 2022, 24(1): 351-361.
赵博识. 可可球二孢调色橡胶木的制备及性能研究[D]. 北京: 北京林业大学, 2020.
秦韶山, 李民, 李晓文, 等. 处理温度对高温热改性橡胶木物理力学性能的影响[J]. 热带作物学报, 2011, 32(3): 533-539.
QIN S S, LI M, LI X W, et al. Effects of treatment temperature on the physical and mechanical properties of thermal modified rubber wood[J]. Chinese Journal of Tropical Crops, 2011, 32(3): 533-539.
Elena Antinori M, Contardi M, Suarato G, et al. Advanced mycelium materials as potential self-growing biomedical scaffolds[J]. Scientific Reports, 2021, 11: 12630.
夏慧敏, 张显权. 真菌菌丝-木屑复合材料的物理力学性能——以灵芝菌、木耳菌为例[J]. 东北林业大学学报, 2018, 46(4): 63-66.
XIA H M, ZHANG X Q. Mechanical properties of fungal hyphae/wood particle composites—taking Ganoderma lucidum and Auricularia auricular as example[J]. Journal of Northeast Forestry University, 2018, 46(4): 63-66.
Takamura N. Studies on hot pressing and drying process in the production of fiberboard Ⅲ. Softening of fiber components in hot pressing of fiber mat[J]. Mokuzai Gakkaishi, 1968, 14(2): 75-79.
Kubovský I, Kačíková D, Kačík F. Structural changes of oak wood main components caused by thermal modification[J]. Polymers, 2020, 12(2): 485.
SUN W J. Understanding the adhesion mechanism in Mycelium-assisted wood bonding[D]. Orono, ME, USA: The University of Maine, 2021.
余雯, 叶秋萍, 沈清宇. 果蔬制品中的美拉德反应及其控制方法研究进展[J]. 亚热带植物科学, 2021, 50(6): 504-510.
YU W, YE Q P, SHEN Q Y. Research progress of Maillard reaction and control methods in fruit and vegetable products[J]. Subtropical Plant Science, 2021, 50(6): 504-510.
杨叶丽, 蔡英春, 付宗营, 等. 温度及含水率对落叶松和白桦动态黏弹性的定量分析[J]. 东北林业大学学报, 2017, 45(8): 66-69.
YANG Y L, CAI Y C, FU Z Y, et al. Effects of temperature and moisture content on dynamic viscoelasticity of larch and birch[J]. Journal of Northeast Forestry University, 2017, 45(8): 66-69.
YE H R, WANG Y, YU Q H, et al. Bio-based composites fabricated from wood fibers through self-bonding technology[J]. Chemosphere, 2022, 287(Pt 4): 132436.
Carvalho L M H, Costa C A V. Modeling and simulation of the hot-pressing process in the production of medium density fiberboard (mdf)[J]. Chemical Engineering Communications, 1998, 170(1): 1-21.
Appels F V W, Dijksterhuis J, Lukasiewicz C E, et al. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material[J]. Scientific Reports, 2018, 8: 4703.
闫薇, 于兰芳, 曹春红, 等. 菌丝体生物泡沫材料防火特性研究[J]. 消防科学与技术, 2021, 40(8): 1239-1242.
YAN W, YU L F, CAO C H, et al. Study on fire performance of mycelium bio-foam[J]. Fire Science and Technology, 2021, 40(8): 1239-1242.
Tacer-Caba Z, Varis J J, Lankinen P, et al. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites[J]. Materials & Design, 2020, 192: 108728.
XING D, Magdouli S, ZHANG J, et al. Microbial remediation for the removal of inorganic contaminants from treated wood: Recent trends and challenges[J]. Chemosphere, 2020, 258: 127429.
相关文章
相关作者
相关机构
微信公众号