桉木高温热处理传热过程的数值模拟与验证
Numerical Simulation and Verification of Heat Transfer during High-Temperature Heat Treatment of Eucalyptus Wood
- 2023年37卷第1期 页码:48-54
DOI: 10.12326/j.2096-9694.2022125
扫 描 看 全 文
1.北京林业大学材料科学与技术学院
2.木材科学与工程北京市重点实验室,北京 100083
扫 描 看 全 文
耿金光,郭晋,何露茜等.桉木高温热处理传热过程的数值模拟与验证[J].木材科学与技术,2023,37(01):48-54.
GENG Jinguang,GUO Jin,HE Luxi,et al.Numerical Simulation and Verification of Heat Transfer during High-Temperature Heat Treatment of Eucalyptus Wood[J].Chinese Journal of Wood Science and Technology,2023,37(01):48-54.
以一步升温、分段升温两种升温方式对20 mm厚巨尾桉(,Eucalyptus grandis×E.urophylla,)板材分别进行140、160和180 ℃的高温热处理,分析升温条件对木材温度变化的影响;并采用数值模拟方法求解桉木高温热处理升温过程的三维传热模型,研究其瞬态传热特性,同时对桉木内部温度分布进行预测。结果表明:在高温热处理升温过程中,较低目标温度以及分段升温方式更有助于缩小木材内部的温度梯度。试验验证了数值模拟结果的准确性(误差小于3.0%),构建的传热模型可用来预测试验条件下任意时刻桉木的中心层温度,为高温热处理工艺的优化提供依据。
Eucalyptus grandis × E.urophylla, boards with 20 mm-thickness were heat-treated under high temperatures of 140 ℃, 160 ℃, and 180 ℃ respectively. Two heating methods were used, including one-step heating and segmented heating. The effect of heating conditions on the temperature change in wood was analyzed. The numerical simulation method was used to construct a three-dimensional heat transfer model for eucalyptus wood during the high temperature heat treatment to investigate its transient heat transfer characteristics and predict the internal temperature distribution. The results showed that a lower target temperature and a segmented heating method could reduce the internal temperature gradient of the wood during the high temperature heat treatment. The accuracy of the numerical simulation results (error,<,3.0%) was verified by experiment data. The model can predict the central temperature of eucalyptus wood at any time. Thus it provides a basis for the optimization of the high temperature heat treatment process.
桉木高温热处理传热温度梯度数值模拟
Eucalyptus woodhigh temperature heat treatmentheat transfertemperature gradientnumerical simulation
陈升侃,李昌荣,许翠娟,等. 桉树无性系生长遗传分析与选择[J]. 中南林业科技大学学报, 2020, 40(11): 25-30, 38.
CHEN S K, LI C R, XU C J, et al. Genetic analysis and selection of Eucalyptus clones growth[J]. Journal of Central South University of Forestry & Technology, 2020, 40(11): 25-30, 38.
黄腾华,刘学锋,王军锋,等. 百度试验法研究6种大径级桉树木材干燥特性及工艺[J]. 西北林学院学报, 2020, 35(4): 205-211.
HUANG T H, LIU X F, WANG J F, et al. A preliminary study on drying characteristics and drying process of 6 species of Eucalyptus wood with large-diameter through 100°C test method[J]. Journal of Northwest Forestry University, 2020, 35(4): 205-211.
李金朋,李雅菁,何正斌,等. 小径桉木半剖材气干过程的对流传质模型[J]. 东北林业大学学报, 2020, 48(8): 103-106, 132.
LI J P, LI Y J, HE Z B, et al. Convective mass transfer model of small diameter Eucalyptus in air-drying process[J]. Journal of Northeast Forestry University, 2020, 48(8): 103-106, 132.
Mattos B D, Lourencon T V, Serrano L, et al. Chemical modification of fast-growing eucalyptus wood[J]. Wood Science and Technology, 2015, 49(2): 273-288.
付宗营,周凡,高鑫,等. 热处理对进口辐射松木材抗弯性能和尺寸稳定性的影响[J]. 木材工业, 2019, 33(6): 47-50.
FU Z Y, ZHOU F, GAO X, et al. Heat treatment effect on bending properties and dimensional stability of imported radiata pine wood[J]. China Wood Industry, 2019, 33(6): 47-50.
李雅菁,何正斌,伊松林. 热处理对小径桉木拼板尺寸稳定性及材色变化的影响[J]. 林业和草原机械, 2021, 2(1): 13-17.
LI Y J, HE Z B, YI S L. Effect of heat treatment on the dimensional stability and material color change of small diameter Eucalyptus panels[J]. Forestry and Grassland Machinery, 2021, 2(1): 13-17.
吴再兴,陈玉和,黄成建,等. 热处理对木材力学性能的影响综述[J]. 世界林业研究, 2019, 32(1): 59-64.
WU Z X, CHEN Y H, HUANG C J, et al. A review of effects of heat treatment on wood mechanical properties[J]. World Forestry Research, 2019, 32(1): 59-64.
JOHANSSON D, MORÉN, TOM. The potential of colour measurement for strength prediction of thermally treated wood[J]. Holz als Roh-und Werkstoff, 2006, 64(2): 104-110.
温世龙,朱代根,胡本清. 木材高温热处理技术研究现状[J]. 林业机械与木工设备, 2016, 44(2): 8-13.
WEN S L, ZHU D G, HU B Q. Research status of wood high-temperature treatment technology[J]. Forestry Machinery & Woodworking Equipment, 2016, 44(2): 8-13.
程大莉. 高温热处理杉木木材的工艺及性能研究[D]. 南京: 南京林业大学, 2007.
于鸣. 木材炭化罐温度场均匀性及控制方法研究[D]. 哈尔滨: 东北林业大学, 2021.
龙超,郝丙业,刘文斌,等. 热处理木材的工艺及应用[J]. 木材工业, 2007, 21(6): 44-46.
LONG C, HAO B Y, LIU W B, et al. Heat-treated wood and its potential applications[J].China Wood Industry, 2007, 21 (6): 44-46.
Younsi R, Kocaefe D, Poncsak S,et al. A high-temperature thermal treatment of wood using a multiscale computational model: Application to wood poles[J]. Bioresource Technology, 2010, 101(12): 4630-4638.
Kocaefe D, Kocaefe Y, Younsi R, et al. Mathematical modeling of the high temperature treatment of birch in a prototype furnace[J]. Advances in Mechanical Engineering, 2013, 5: 194610.
ZHANG J L, QU L, WANG Z, et al. Simulation and validation of heat transfer during wood heat treatment process[J]. Results in Physics, 2017: 3806-3812.
Oumarou N, Kocaefe D, Kocaefe Y. 3D-modelling of conjugate heat and mass transfers: Effects of storage conditions and species on wood high temperature treatment[J]. International Journal of Heat and Mass Transfer, 2014, 79: 945-953.
何正斌,赵紫剑,伊松林. 木材干燥热质传递理论与数值分析[M]. 北京: 中国林业出版社, 2013.
LEON G, Cruz-de-leon J, Villasenor L. Thermal characterization of pine wood by photoacoustic and photothermal techniques[J]. Holz als Roh-und Werkstoff, 2000, 58(4): 241-246.
徐德良,王思群,孙军,等. 木材有效导热系数研究进展[J]. 世界林业研究, 2014, 27(2): 39-44.
XU D L, WANG S Q, SUN J, et al. Research progress of effective thermal conductivity coefficient of wood[J]. World Forestry Research, 2014, 27(2): 39-44.
HE Z, WANG Z, QU L, et al. Modeling and simulation of heat-mass transfer and its application in wood thermal modification[J]. Results in Physics, 2019, 13: 102213.
Kadem S, Lachemet A, Younsi R, et al. 3D-Transient modeling of heat and mass transfer during heat treatment of wood[J]. International Communications in Heat and Mass Transfer, 2011, 38(6): 717-722.
李哲锋,李振瑞,邵丹彤,等. 涂料及涂层表面性状对木材热性质的影响[J]. 消防科学与技术, 2018, 37(5): 658-661.
LI Z F, LI Z R, SHAO D T, et al. Effect of coating and its surface characteristics on the thermal properties of wood[J]. Fire Science and Technology, 2018, 37(5): 658-661.
褚俊. 木材干燥介质循环状态模拟及对干燥过程影响分析研究[D]. 哈尔滨: 东北林业大学, 2015.
郝晓峰,熊幸阳,允帅,等. 基于串并联理论木材导热系数的初探研究[J]. 林产工业, 2017, 44(8): 53-56.
HAO X F, XIONG X Y, YUN S, et al. A preliminary study of wood conductivity coefficient based on series-parallel theory[J]. China Forest Products Industry, 2017, 44(8): 53-56.
相关作者
相关机构
微信公众号