含水率非均匀分布木材在热板加热下温度分布的变化规律
Temperature Distribution in Wood with Uneven Moisture Distribution during Preheating Process by Press Platens
- 2023年37卷第1期 页码:40-47
DOI: 10.12326/j.2096-9694.2022110
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所;国家林业和草原局木材科学与技术重点实验室,北京 100091
2.西昌学院,四川西昌 615000
3.国际竹藤中心;国家林业和草原局竹藤科学与技术重点实验室,北京 100102
扫 描 看 全 文
黄荣凤,高志强,冯上环等.含水率非均匀分布木材在热板加热下温度分布的变化规律[J].木材科学与技术,2023,37(01):40-47.
HUANG Rongfeng,GAO Zhiqiang,FENG Shanghuan,et al.Temperature Distribution in Wood with Uneven Moisture Distribution during Preheating Process by Press Platens[J].Chinese Journal of Wood Science and Technology,2023,37(01):40-47.
热作用下温度分布和含水率分布的变化规律,是实木层状压缩形成机制研究的基础。以初含水率处于非均匀分布状态下的毛白杨木材为对象,研究在180 ℃热板夹持加热过程中的温度分布变化规律,为揭示层状压缩形成机制提供科学依据。结果表明:初始含水率表层高、内部低的木材,在热板夹持加热过程中,厚度方向上始终存在一个明显的升温速率峰值。随着加热时间的延长,升温速率峰值和高含水率层逐渐向中心移动;高含水率区域内木材,温度较玻璃化转变温度高6.11~47.58 ℃,处于层状软化状态,是层状压缩形成的重要原因之一;采用多元线性回归分析方法建立的木材厚度方向温度预测多变量函数模型,决定系数为0.985,预测木材内部温度的标准误差为3.21 ℃,能够用于木材内部温度分布的预测。
The change in the temperature and moisture distribution in wood is the fundamental mechanism for solid wood sandwich compression formation. In this study, poplar (,Populus tomentosa,) wood with high moisture content (MC) on surfaces and low MC in the interior was used as the raw material. The poplar wood was preheated by press platens at 180 ℃, to investigate the changes of temperature distribution in wood during the preheating process in order to provide evidence for clarifying the mechanism for wood sandwich compression. It was found that a peak heating rate existed in the thickness direction all the time during preheating. As the preheating time extended, the peak heating rate migrated from wood surfaces to the center. The temperature of high MC area was 6.11~47.58 ℃ higher than the wood glass transition point and thus this area was being softened, which was one of the main reasons for wood sandwich compression formation. A multivariate functional model with a coefficient of determination of 0.985 was built to predict the temperatures along the wood thickness direction. The standard error for the predicted temperatures in wood was 3.21 ℃, suggesting that this model can well predict temperatures in wood.
含水率非均匀分布木材热板加热升温速率温度分布层状压缩
uneven distribution of MC in woodheating by heating platesheating ratetemperature distributionsandwich compression
Norimoto M, Ota C, Akitsu H, et al. Permanent fixation of bending deformation in wood by heat treatment[J]. Wood Research, 1993, 79: 23-33.
Inoue M, Kodama J, Yamamoto Y, et al. Dimensional stabilization of compressed wood using high-frequency heating II[J]. Mokuzai Gakkaishi, 2006, 52(3): 173-177.
Kamke F A, Rathi V M. Apparatus for viscoelastic thermal compression of wood[J]. European Journal of Wood and Wood Products, 2011, 69(3): 483-487.
Laine K, Rautkari L, Hughes M. The effect of process parameters on the hardness of surface densified Scots pine solid wood[J]. European Journal of Wood and Wood Products, 2013, 71(1): 13-16.
Kitamori A, Jung K H, Mori T, et al. Mechanical properties of compressed wood in accordance with the compression ratio[J]. Mokuzai Gakkaishi, 2010, 56(2): 67-78.
黃栄鳳, 王艶偉, 趙有科, 呂建雄, 張躍明. 水熱コントロールによる木材の層状圧縮[J]. 木材学会誌, 2012, 58(2): 84-89.
Morisato K, Kotani H, Ishimaru Y, et al. Adsorption of liquids and swelling of wood IV: Temperature dependence on the adsorption[J]. Holzforschung, 1999, 53(6): 669-674.
Moutee M, Fortin Y, Laghdir A, et al. Cantilever experimental setup for rheological parameter identification in relation to wood drying[J]. Wood Science and Technology, 2010, 44(1): 31-49.
Schmidt J. Press drying of beech wood[J]. Forest Products Journal, 1967, 17(9): 107-113.
Bramhall G. Mathematical model for lumber drying. I. Principles involved[J]. Wood Science, 1979, 12(1): 14-21.
李延军, 李梁, 张璧光. 非稳态法测定杉木板材的水分扩散系数[J]. 浙江林学院学报, 2007, 24(2): 121-124.
LI Y J, LI L, ZHANG B G. Moisture diffusion coefficient of Cunninghamia lanceolata board with non-steady state conditions[J]. Journal of Zhejiang Forestry College, 2007, 24(2): 121-124.
李梁, 李贤军, 张璧光. 非稳态法测定马尾松扩散系数[J]. 干燥技术与设备, 2009, 7(2): 79-83.
LI L, LI X J, ZHANG B G. Determination of moisture diffusion coefficient of Pinus massoniana with non-steady state methods[J]. Drying Technology & Equipment, 2009, 7(2): 79-83.
俞昌铭. 多孔材料传热传质及其数值分析[M]. 北京:清华大学出版社,2011.
Crank J. Mathematics of diffusion[M]. Oxford: Clarendon Oxford, 1956.
TANG Y F, Pearson R G, Hart C A, et al. A numerical model for heat transfer and moisture evaporation processes in hot-press drying-an integral approach[J]. Wood and Fiber Science, 1994, 26(1): 78-90.
汪佑宏, 顾炼百, 王传贵, 等. 马尾松锯材在热压干燥过程中的传热规律[J]. 南京林业大学学报(自然科学版), 2005, 29(4): 33-36.
WANG Y H, GU L B, WANG C G, et al. Regularity of heat transfer during press drying of Pinus massoniana lumber[J]. Journal of Nanjing Forestry University, 2005, 29(4): 33-36.
汪佑宏, 顾炼百, 刘启明, 等. 马尾松锯材在热压干燥过程中的传质数学模型[J]. 南京林业大学学报(自然科学版), 2008, 32(2): 71-75.
WANG Y H, GU L B, LIU Q M, et al. Mathematical models of moisture transfer during press drying of Pinus massoniana lumber[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(2): 71-75.
GAO Z Q, HUANG R F, CHANG J M, et al. Sandwich compression of wood: effects of preheating time and moisture distribution on the formation of compressed layer(s)[J]. European Journal of Wood and Wood Products, 2019, 77(2): 219-227.
Takamura N. Studies on hot pressing and drying process in the production of fiberboard Ⅲ. Softening of fiber components in hot pressing of fiber mat[J]. Mokuzai Gakkaishi, 1968, 14(2): 75-79.
Siau J.F. Transport processes in wood[M]. Berlin: Springer-Verlag, 1984.
Furuta Y, Nakajima M, Nakanii E, et al. The effects of lignin and hemicellulose on thermal-softening properties of water-swollen wood[J]. Mokuzai Gakkaishi, 2010, 56(3): 132-138.
Yokoyama M, Kanayama K, Furuta Y, et al. Mechanical and dielectric relaxations of wood in a low temperature range Ⅲ: Application of sech law to dielectric properties due to adsorbed water[J]. Mokuzai Gakkaishi, 2000, 46(3): 173-180.
相关文章
相关作者
相关机构
微信公众号