基于自适应校正和非锐化掩模的木材单板节子图像增强算法研究
Study on Image Enhancement Algorithm of Wood Veneer Knot Based on Adaptive Correction and Unsharpening Mask Technology
- 2023年37卷第1期 页码:74-82
DOI: 10.12326/j.2096-9694.2022107
扫 描 看 全 文
1.内蒙古农业大学材料科学与艺术设计学院,内蒙古呼和浩特 010018
2.山西应用科技学院信息工程系,山西太原 030000
扫 描 看 全 文
贺春光,高凡,袁云梅等.基于自适应校正和非锐化掩模的木材单板节子图像增强算法研究[J].木材科学与技术,2023,37(01):74-82.
HE Chunguang,GAO Fan,YUAN Yunmei,et al.Study on Image Enhancement Algorithm of Wood Veneer Knot Based on Adaptive Correction and Unsharpening Mask Technology[J].Chinese Journal of Wood Science and Technology,2023,37(01):74-82.
为提高单板节子图像的对比度、细节清晰度和颜色保真性,综合考虑单板活节和死节图像的特征,提出一种将自适应校正和非锐化掩模相结合的单板节子图像增强算法。在可分离颜色信息的HSV空间提取亮度分量、饱和度分量,分别进行加权分布的自适应Gamma校正和自适应非线性拉伸处理,用于改善单板节子图像对比度和保持色彩自然,最后利用非锐化掩模技术增强节子细节区域。试验结果表明,该算法能够有效地改善单板节子图像的对比度和细节清晰度,图像颜色更为自然;突出节子缺陷部位,保留了较多节子细节信息;在均方差、峰值信噪比和结构相似性指数上,比AGC-Quantile和直方图均衡化算法均有提升。
In order to improve image qualities of veneer knots, including the contrast, detail sharpness, and color fidelity , an image enhancement algorithm combining adaptive correction and unsharpening mask technology was proposed. The brightness (V) component and saturation (S) component were extracted from the HSV space of separable color information. The weighted distribution adaptive gamma correction and adaptive nonlinear stretching processing were used to improve the contrast and keep the color natural. Finally, unsharpened mask technique was used to enhance the sub-detail area around knots. Experiment results showed that this algorithm could effectively improve the contrast and detail definition of the veneer images, and the image color was more natural. The defects of knots were more prominent and more details of knots were retained. Compared with AGC-Quantile and histogram equalization algorithms, these algorithms have better mean square error, peak signal to noise ratio, and structural similarity index.
单板节子加权分布的自适应Gamma校正自适应非线性拉伸非锐化掩模图像增强
veneer knotadaptive gamma correction for weighted distributionadaptive nonlinear tensionunsharpened maskimage enhancement
吕斌. 谈新形势下我国人造板产业的发展[J]. 国家林业局管理干部学院学报, 2015, 14(4): 10-16.
LYU B. The development of wood-based panels industry under the new situation in China[J]. State Academy of Forestry Administration Journal, 2015, 14(4): 10-16.
汪宏, 多化琼, 马坤, 等. 基于Lαβ变换和伽马校正的蒙古族家居纹样增强研究[J]. 内蒙古农业大学学报(自然科学版), 2020, 41(6): 58-64.
WANG H, DUO H Q, MA K, et al. Research on the enhancement of Mongolian home furnishing pattern based on lαβ transformation and gamma correction method[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2020, 41(6): 58-64.
马坤. 基于DWT-SVD和拐点伽马的木材彩色图像增强与识别[D]. 呼和浩特: 内蒙古农业大学, 2019.
HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution[J]. IEEE Transactions on Image Processing, 2013, 22(3): 1032-1041.
陆涛. 基于统计特征分类耦合自适应Gamma校正的图像增强算法[J]. 电子测量与仪器学报, 2020, 34(6): 154-162.
LU T. Image enhancement based on image classificationcoupled adaptive Gamma correction[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(6): 154-162.
苑豪杰, 刘昌禄, 许建平, 等. 基于自适应多子直方图均衡的图像增强算法[J]. 指挥控制与仿真, 2017, 39(5): 45-49.
YUAN H J, LIU C L, XU J P, et al. Image enhancement algorithm based on adaptive multi sub-histogram equalization[J]. Command Control & Simulation, 2017, 39(5): 45-49.
王鹏章. 基于分位数算法的木材节子图像增强与识别[D]. 呼和浩特: 内蒙古农业大学, 2020.
谢海波. 提升小波变换域矿井光照不均匀图像双直方图均衡化增强[J]. 金属矿山, 2016(5): 153-157.
XIE H B. Bi-histogram equalization enhancement of the undermine uneven illumination image based on lifting wavelet transform domain[J]. Metal Mine, 2016(5): 153-157.
宋瑞霞, 李达, 王小春. 基于HSI色彩空间的低照度图像增强算法[J]. 图学学报, 2017, 38(2): 217-223.
王殿伟, 韩鹏飞, 范九伦, 等. 基于光照-反射成像模型和形态学操作的多谱段图像增强算法[J]. 物理学报, 2018, 67(21): 210701.
WANG D W, HAN P F, FAN J L, et al. Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation[J]. Acta Physica Sinica, 2018, 67(21): 210701.
戴天虹, 顾昕岑, 刘学哲, 等. 基于数学形态学和改进Otsu的单板缺陷检测[J]. 沈阳工业大学学报, 2016, 38(6): 674-679.
DAI T H, GU X C, LIU X Z, et al. Defect detection of veneer based on mathematical morphology and improved Otsu algorithm[J]. Journal of Shenyang University of Technology, 2016, 38(6): 674-679.
吴思远, 张召, 邹洋. 基于2D Gabor小波和HSV空间的木材缺陷检测[J]. 郑州大学学报(理学版), 2010, 42(1): 93-97.
WU S Y, ZHANG Z, ZOU Y. Timber defects detection based on 2D Gabor wavelet and HSV color space[J]. Journal of Zhengzhou University (Natural Science Edition), 2010, 42(1): 93-97.
Kim J Y, Kim J H. Design of unsharp mask filter based on retinex theory for image enhancement[J]. J Multim Inf Syst, 2017, 4: 65-72.
SHI Z, FENG Y, ZHAO M, et al. Normalized gamma transformation‐based contrast‐limited adaptive histogram equalization with color correction for sand–dust image enhancement[J].IET Image Processing.2020, 14(4):747-756.
Kim M, Chung M. Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2008, 54(3): 1389-1397.
SONG R X, LI D, WANG X C. Low illumination image enhancement algorithm based on HSI color space[J]. Journal of Graphics, 2017, 38(2): 217-223.
杜豫怡. 基于AGC-Quantile的蒙古族家具纹样的增强与识别[D]. 呼和浩特: 内蒙古农业大学, 2021.
HUANG L D, ZHAO W, WANG J, et al. Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement[J]. IET Image Processing, 2015, 9(10): 908-915.
WANG J J, CHEN P, ZHENG N N, et al. Associations between MSE and SSIM as cost functions in linear decomposition with application to bit allocation for sparse coding[J]. Neurocomputing, 2021, 422: 139-149.
许欢, 张维朋. 基于Matlab变压器输变电设备红外图像边缘检测研究[J]. 电脑知识与技术, 2018, 14(15): 186-188.
XU H, ZHANG W P. Research on edge detection of infrared image of transformer power transmission and transformation equipment based on Matlab[J]. Computer Knowledge and Technology, 2018, 14(15): 186-188.
孟曦婷, 计璐艳. 多阶段遥感图像目标检测方法研究[J]. 计算机与现代化, 2020(9): 66-72.
MENG X T, JI L Y. A multi-stage remote sensing image object detection method[J]. Computer and Modernization, 2020(9): 66-72.
秦彦平, 张军, 多化琼, 等. 木材节子图像增强的小波变换与双三次插值融合方法[J]. 西北林学院学报, 2021, 36(5): 183-189.
QIN Y P, ZHANG J, DUO H Q, et al. Fusion method of wavelet transform and bicubic interpolation for wood knot image enhancement[J]. Journal of Northwest Forestry University, 2021, 36(5): 183-189.
燕雨洁, 张煜朋, 贾珍珠, 等. 基于深度学习的低照度图像增强技术研究综述[J]. 无线互联科技, 2021, 18(1): 77-80.
YAN Y J, ZHANG Y P, JIA Z Z, et al. Review of low illumination image enhancement technology based on deep learning[J]. Wireless Internet Technology, 2021, 18(1): 77-80.
马璐. 基于多尺度小波U型网络的低光照图像增强[J]. 红外技术, 2022, 44(4): 410-420.
MA L. Low-light image enhancement based on multi-scale wavelet U-net[J]. Infrared Technology, 2022, 44(4): 410-420.
YAN X, GILANI S Z, QIN H L, et al. Structural similarity loss for learning to fuse multi-focus images[J]. Sensors (Basel, Switzerland), 2020, 20(22): 6647.
Dagher I, Mikhael S, Al-Khalil O. Gabor face clustering using affinity propagation and structural similarity index[J]. Multimedia Tools and Applications, 2021, 80(3): 4719-4727.
徐武, 杨昊东, 汤弘毅, 等. 基于改进加权引导滤波的红外图像增强算法[J]. 激光杂志, 2022, 43(1): 101-106.
XU W, YANG H D, TANG H Y, et al. Infrared image enhancement algorithm based on improved weighted guided filtering[J]. Laser Journal, 2022, 43(1): 101-106.
王亚敏. 不同光照条件下的图像增强算法研究[D]. 合肥: 安徽大学, 2019.
相关文章
相关作者
相关机构
微信公众号