应用近红外光谱技术预测进口辐射松木材抗压和抗弯性能
Compressive and Bending Property Prediction of Imported
Pinus radiata Wood based on Near-Infrared Spectroscopy- 2023年37卷第1期 页码:55-60
DOI: 10.12326/j.2096-9694.2022078
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
2.南京林业大学林业资源高效加工利用协同创新中心,江苏南京 210037
扫 描 看 全 文
石兰兰,汪睿,任海青等.应用近红外光谱技术预测进口辐射松木材抗压和抗弯性能[J].木材科学与技术,2023,37(01):55-60.
SHI Lanlan,WANG Rui,REN Haiqing,et al.Compressive and Bending Property Prediction of Imported Pinus radiata Wood based on Near-Infrared Spectroscopy[J].Chinese Journal of Wood Science and Technology,2023,37(01):55-60.
以进口辐射松(,Pinus radiata,)木材为研究对象,探究应用近红外光谱技术预测辐射松木材抗压和抗弯性能的可行性,比较不同切面采谱、不同光谱预处理方法以及不同谱区波段的建模效果。结果表明,用弦切面的光谱建立的校正模型精度最高。原始光谱建立的校正模型精度较好,相关系数达0.85及以上,抗压强度模型在经过S-G卷积平滑处理后相关系数可提高到0.92。在全波段建立的校正模型效果最好。经外部验证,抗压强度、抗弯强度和抗弯弹性模量预测值与实测值相关性较高,相关系数达0.82及以上。研究结果可为辐射松木材的抗压和抗弯性能的快速评价提供新方法。
The feasibility of predicting the compressive and bending properties was explored based on near-infrared spectroscopy for imported, Pinus radiata,. The various modeling were compared based on different wood sections, spectral pretreatment methods, and wavebands in different spectral regions respectively. The results showed that the calibration models established by the spectra of the tangential section had the highest accuracy. The calibration models with the original spectra had good accuracy, and the correlation coefficients were 0.85 and above. The correlation coefficient of the compressive strength model treated by S-G convolution smoothing raised to 0.92. The calibration models in the whole wavelength all had the best effect. The external validation of the calibration models showed that the predicted value of the prediction model for the compressive strength parallel to the grain, MOR, and MOE of ,Pinus radiata, had a high correlation with the measured value and the correlation coefficient was 0.82 and above. The results provide a new method for rapid evaluation of the compressive and bending properties in ,Pinus radiata,.
辐射松近红外光谱预测模型抗压性能抗弯性能
Pinus radiatanear-infrared spectroscopyprediction modelcompressive propertiesbending properties
中国林业科学研究院木材工业研究所. 中国主要树种的木材物理力学性质[M]. 北京: 中国林业出版社, 1982.
吴艳华, 贾茹, 任海青, 等. 进口辐射松木材主要物理性能径向变异研究[J]. 林业工程学报, 2019, 4(6): 48-53.
WU Y H, JIA R, REN H Q, et al. Study on radial variation of main physical properties of imported Pinus radiata wood[J]. Journal of Forestry Engineering, 2019, 4(6): 48-53.
吴艳华, 孙海燕, 任海青, 等. 进口辐射松木材物理与力学性能评价[J]. 木材工业, 2019, 33(2): 48-50.
WU Y H, SUN H Y, REN H Q, et al. Physical and mechanical properties of imported Pinus radiata wood[J]. China Wood Industry, 2019, 33(2): 48-50.
付宗营, 周凡, 高鑫, 等. 热处理对进口辐射松木材抗弯性能和尺寸稳定性的影响[J]. 木材工业, 2019, 33(6): 47-50.
FU Z Y, ZHOU F, GAO X, et al. Heat treatment effect on bending properties and dimensional stability of imported radiata pine wood[J]. China Wood Industry, 2019, 33(6): 47-50.
张斌, 马星霞, 张景朋, 等. 进口辐射松木材可处理性能及防腐性能测评[J]. 木材工业, 2019, 33(6): 51-53, 58.
ZHANG B, MA X X, ZHANG J P, et al. Treatability and decay resistance of imported radiata pine wood[J]. China Wood Industry, 2019, 33(6): 51-53, 58.
周永东. 进口桃花心木和辐射松木材性质及加工技术研究[J]. 木材工业, 2019, 33(1): 1-4.
ZHOU Y D. Wood properties and processing technology of radiata pine and mahogany[J]. China Wood Industry, 2019, 33(1): 1-4.
LI M Y, REN H Q, WANG Y R, et al. Comparative studies on the mechanical properties and microstructures of outerwood and corewood in Pinus radiata D. Don[J]. Journal of Wood Science, 2021, 67: 60.
刘一星, 赵广杰. 木材学[M]. 2版. 北京: 中国林业出版社, 2012.
陈国荣. 近红外光谱技术在木材工业中的研究进展[J]. 辽宁林业科技, 2016(3): 38-42.
CHEN G R. Research progress of near-infrared spectroscopy in the wood industry[J]. Liaoning Forestry Science and Technology, 2016, (3): 38-42.
汪睿, 王雪玉, 贾茹, 等. 近红外光谱法快速预测栓皮栎木材密度可行性研究[J]. 木材工业, 2020, 34(5): 54-58.
WANG R, WANG X Y, JIA R, et al. Feasibility research on rapid predicting wood density in Quercus variabilis by near infrared spectroscopy[J]. China Wood Industry, 2020, 34(5): 54-58.
贾茹, 吕志宏, 汪睿, 等. 近红外光谱技术预测木材性能研究新进展[J]. 林产工业, 2021, 58(5): 12-16, 23.
JIA R, LYU Z H, WANG R, et al. Research developments for prediction of wood properties by near-infrared spectroscopy[J]. China Forest Products Industry, 2021, 58(5): 12-16, 23.
杨忠, 江泽慧, 费本华, 等. 近红外光谱技术及其在木材科学中的应用[J]. 林业科学, 2005, 41(4): 177-183.
YANG Z, JIANG Z H, FEI B H, et al. Application of near infrared(NIR) spectroscopy to wood science[J]. Scientia Silvae Sinicae, 2005, 41(4): 177-183.
Hoffmeyer P, Pedersen J G. Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy[J]. Holz Als Roh- Und Werkstoff, 1995, 53(3): 165-170.
Kelley S S, Rials T G, Groom L R, et al. Use of near infrared spectroscopy to predict the mechanical properties of six softwoods[J]. Holzforschung, 2004, 58(3): 252-260.
赵荣军, 邢新婷, 吕建雄, 等. 粗皮桉木材力学性质的近红外光谱方法预测[J]. 林业科学, 2012, 48(6): 106-111.
ZHAO R J, XING X T, LYU J X, et al. Estimation of wood mechanical properties of Eucalyptus pellita by near infrared spectroscopy[J]. Scientia Silvae Sinicae, 2012, 48(6): 106-111.
张怡卓, 苏耀文, 李超, 等. 蒙古栎木材MOR与MOE的近红外光谱预测模型分析[J]. 北京林业大学学报, 2016, 38(8): 99-105.
ZHANG Y Z, SU Y W, LI C, et al. Analysis of MOR and MOE prediction model of Quercus mongolica wood by near infrared spectroscopy[J]. Journal of Beijing Forestry University, 2016, 38(8): 99-105.
虞华强, 赵荣军, 傅峰, 等. 利用近红外光谱技术预测杉木力学性质[J]. 西北林学院学报, 2007, 22(5): 149-154.
YU H Q, ZHAO R J, FU F, et al. Prediction mechanical properties of Chinese fir wood by near infrared spectroscopy[J]. Journal of Northwest Forestry University, 2007, 22(5): 149-154.
JIA R, WANG Y R, WANG R, et al. Physical and mechanical properties of poplar clones and rapid prediction of the properties by near infrared spectroscopy[J]. Forests, 2021, 12(2): 206.
YU L, LIANG Y L, ZHANG Y Z, et al. Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares[J]. Journal of Forestry Research, 2020, 31(3): 1053-1060.
TONG L, ZHANG W B. Using Fourier transform near-infrared spectroscopy to predict the mechanical properties of thermally modified southern pine wood[J]. Applied Spectroscopy, 2016, 70(10): 1676-1684.
JIA R, WANG Y R, WANG R, et al. Main mechanical properties of new Chinese fir clones and their rapid prediction by near-infrared spectroscopy[J]. Canadian Journal of Forest Research, 2022, 52(1): 90-99.
贾茹, 吴艳华, 任海青, 等. 基于近红外光谱技术预测两种进口材气干密度[J]. 安徽农业大学学报, 2020, 47(5): 744-748.
JIA R, WU Y H, REN H Q, et al. The prediction of air-dry density of two imported wood by near infrared spectroscopy[J]. Journal of Anhui Agricultural University, 2020, 47(5): 744-748.
江泽慧, 黄安民, 王斌. 木材不同切面的近红外光谱信息与密度快速预测[J]. 光谱学与光谱分析, 2006, 26(6): 1034-1037.
JIANG Z H, HUANG A M, WANG B. Near infrared spectroscopy of wood sections and rapid density prediction[J]. Spectroscopy and Spectral Analysis, 2006, 26(6): 1034-1037.
Alves A, Santos A, Rozenberg P, et al. A common near infrared—based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix × eurolepis[J]. Wood Science and Technology, 2012, 46(1/2/3): 157-175.
Tsuchikawa S, Kobori H. A review of recent application of near infrared spectroscopy to wood science and technology[J]. Journal of Wood Science, 2015, 61(3): 213-220.
相关作者
相关机构
微信公众号