木质纤维素基包装材料研究进展
Research Progress of Lignocellulosic-Based Materials in Packaging
- 2022年36卷第6期 页码:13-23
DOI: 10.12326/j.2096-9694.2022076
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
2.北京林业大学材料科学与技术学院; 木材科学与工程北京市重点实验室,北京 100083
3.粤港澳大湾区高校协同创新中心,广东珠海 519030
4.珠海市设计中心,广东珠海 519030
5.澳门甡物科技有限公司,澳门 999078
扫 描 看 全 文
蒋向向,卢芸,丰霞等.木质纤维素基包装材料研究进展[J].木材科学与技术,2022,36(06):13-23.
JIANG Xiang-xiang,LU Yun,FENG Xia,et al.Research Progress of Lignocellulosic-Based Materials in Packaging[J].Chinese Journal of Wood Science and Technology,2022,36(06):13-23.
木质纤维素具有良好的生物降解性、优异的力学性能和热稳定性,是塑料包装材料的理想替代品。介绍木质纤维素材料的组成、特点与种类,总结木质纤维素材料在食品包装、缓冲包装、智能包装方面的研究进展,分析木质纤维素基包装材料存在的问题和不足,并对未来的研究和应用进行展望。
Lignocellulose is an ideal substitute for plastic materials in packaging because of its good biodegradability, excellent mechanical properties, and thermal stability. This paper introduces the composition, characteristics, and types of lignocellulosic materials, summarizes the research progress of lignocellulosic materials in food packaging, cushioning packaging, and intelligent packaging, and analyzes the existing problems and shortcomings of lignocellulose materials. The future research and application of lignocellulosic materials in packaging are proposed.
木质纤维素包装材料食品包装缓冲包装智能包装
lignocellulosepackaging materialsfood packagingcushioning packagingintelligent packaging
Marinova V. Trends in packaging sector[J]. Izvestia Journal of the Union of Scientists-Varna, 2021, 10(1): 3-13.
Rochman C M, Browne M A, Halpern B S, et al. Classify plastic waste as hazardous[J]. Nature, 2013, 494(7436): 169-171.
Brahney J, Hallerud M, Heim E, et al. Plastic rain in protected areas of the United States[J]. Science, 2020, 368(6496): 1257-1260.
Law K L, Starr N, Siegler T R, et al. The United States' contribution of plastic waste to land and ocean[J]. Science Advances, 2020, 6(44): eabd0288.
Mishra R K, Sabu A, Tiwari S K. Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect[J]. Journal of Saudi Chemical Society, 2018, 22(8): 949-978.
Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098.
陈洪章. 纤维素生物技术:理论与实践[J]. 生物技术通讯, 2014, 25(5): 663.
GU P, LIU W, HOU Q X, et al. Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review[J]. Journal of Materials Chemistry A, 2021, 9(25): 14233-14264.
Balat M, Ayar G. Biomass energy in the world, use of biomass and potential trends[J]. Energy Sources, 2005, 27(10): 931-940.
O’Dea R M, Willie J A, Epps T H. 100th anniversary of macromolecular science viewpoint: polymers from lignocellulosic biomass. Current challenges and future opportunities[J]. ACS Macro Letters, 2020, 9(4): 476-493.
Asokan P, Firdoous M, Sonal W. Properties and potential of bio fibres, bio binders, and bio composites[J]. Reviews on Advanced Materials Science, 2012, 30(3): 254-261.
PAN Y F, Farmahini-FarahaniMadjid, O'HearnPerry, et al. An overview of bio-based polymers for packaging materials[J]. Journal of Bioresources and Bioproducts, 2016, 1(3): 106-113. doi: 10.21967/jbb.v1i3.49http://dx.doi.org/10.21967/jbb.v1i3.49.
Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41(4): 1538-1558.
Sanderson K. Lignocellulose: A chewy problem[J]. Nature, 2011, 474(7352): S12-S14.
Schutyser W, Renders T, Van den Bosch S, et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical Society Reviews, 2018, 47(3): 852-908.
WU X, LUO N, XIE S, et al. Photocatalytic transformations of lignocellulosic biomass into chemicals[J]. Chemical Society Reviews, 2020, 49(17): 6198-6223.
Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie (International Ed in English), 2005, 44(22): 3358-3393.
Sun R, Sun X F, Tomkinson J. Hemicelluloses and their derivatives[J]. Hemicelluloses: Science and Technology, 2004, 1:2-22.
Campbell M M, Sederoff R R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants)[J]. Plant physiology, 1996, 110(1): 3-13.
Medronho B, Lindman B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms[J]. Advances in Colloid and Interface Science, 2015, 222: 502-508.
马丽莎, 苑宇峰, 张莉莉, 等. 木质纤维素各组分在其复合水凝胶制备及功能化中的关键作用[J]. 中国造纸学报, 2021, 36(4): 64-75.
MA L S, YUAN Y F, ZHANG L L, et al. The key role of lignocellulose component in the preparation and functionalization of its composite hydrogels[J]. Transactions of China Pulp and Paper, 2021, 36(4): 64-75.
Miao C W, Hamad W Y. Cellulose reinforced polymer composites and nanocomposites: a critical review[J]. Cellulose, 2013, 20(5): 2221-2262.
王海莹, 李大纲. 纳米纤维素三维网状增强聚乙烯醇复合材料的研究[J]. 塑料工业, 2014, 42(4): 116-119.
WANG H Y, LI D G. Investigation on PVA/cellulose nanofibers composites with three-dimensional network[J]. China Plastics Industry, 2014, 42(4): 116-119.
SU Y, YANG B, LIU J, et al. Prospects for replacement of some plastics in packaging with lignocellulose materials: A brief review[J]. BioResources, 2018, 13(2): 4550-4576.
Laftah W A, Wan Abdul Rahman W A. Pulping process and the potential of using non-wood pineapple leaves fiber for pulp and paper production: a review[J]. Journal of Natural Fibers, 2016, 13(1): 85-102.
陈玉芬, 钱怡, 孙昊. 一种新型植物纤维发泡缓冲材料制备研究[J]. 化工新型材料, 2016, 44(5): 243-245.
CHEN Y F, QIAN Y, SUN H. Research on the preparation of a new plant fiber foaming cushion material[J]. New Chemical Materials, 2016, 44(5): 243-245.
Tayeb A H, Amini E, Ghasemi S, et al. Cellulose nanomaterials-binding properties and applications: A review[J]. Molecules, 2018, 23(10): 2684.
Abitbol T, Rivkin A, Cao Y, et al. Nanocellulose, a tiny fiber with huge applications[J]. Current opinion in biotechnology, 2016, 39: 76-88.
Barari B, Omrani E, Dorri Moghadam A, et al. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the ‘Green’ composite[J]. Carbohydr Polym, 2016, 147: 282-293.
CHENG S, ZHANG Y, CHA R, et al. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties[J]. Nanoscale, 2016, 8(2): 973-978.
WANG S, LU A, ZHANG L. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016, 53: 169-206.
CHENG D, AN X, ZHANG J, et al. Facile preparation of regenerated cellulose film from cotton linter using organic electrolyte solution (OES)[J]. Cellulose, 2017, 24(4): 1631-1639.
YANG Q, Fukuzumi H, Saito T, et al. Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions[J]. Biomacromolecules, 2011, 12(7): 2766-2771.
赵娜, 程茜, 徐晓云, 等. 食品轻质包装材料的发展现状与前景[J]. 食品工业科技, 2014, 35(1): 363-367.
ZHAO N, CHENG X, XU X Y, et al. Development situation and prospects of food lightweight packaging material[J]. Science and Technology of Food Industry, 2014, 35(1): 363-367.
马明国, 付连花, 李亚瑜, 等. 纤维素基复合材料及其在医用方面的研究进展[J]. 林业工程学报, 2017, 2(6): 1-9.
MA M G, FU L H, LI Y Y, et al. Research progress of cellulose-based biomedical functional composites[J]. Journal of Forestry Engineering, 2017, 2(6): 1-9.
郄冰玉, 唐亚丽, 卢立新, 等. 纳米纤维素在可降解包装材料中的应用[J]. 包装工程, 2017, 38(1): 19-25.
QIE B Y, TANG Y L, LU L X, et al. Application of nano-cellulose in degradable packaging materials[J]. Packaging Engineering, 2017, 38(1): 19-25.
ZHOU L, KE K, YANG M B, et al. Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: a review[J]. Composites Communications, 2021, 23: 100548.
Abdulkhani A, Hosseinzadeh J, Ashori A, et al. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite[J]. Polymer Testing, 2014, 35: 73-79.
WANG Q, JI C, SUN J, et al. Structure and properties of polylactic acid biocomposite films reinforced with cellulose nanofibrils[J]. Molecules, 2020, 25(14): 3306.
陈璐, 王敬敬, 赵勇, 等. 纤维素基可降解抑菌食品包装材料的研究及应用进展[J]. 包装工程, 2021, 42(5): 1-12.
CHEN L, WANG J J, ZHAO Y, et al. Research and progress of cellulose-based biodegradable and antibacterial food packaging materials[J]. Packaging Engineering, 2021, 42(5): 1-12.
余易琳,徐丹,任丹,等. 纳米纤维素/壳聚糖复合涂膜在红桔保鲜中的应用[J]. 食品与发酵工业. 2020, 46(2): 135-141.
鲍文毅, 徐晨, 宋飞, 等. 纤维素/壳聚糖共混透明膜的制备及阻隔抗菌性能研究[J]. 高分子学报, 2015(1): 49-56.
BAO W Y, XU C, SONG F, et al. Preparation and properties of cellulose/chitosan transparent films[J]. Acta Polymerica Sinica, 2015(1): 49-56.
LIU L, CHEN Y Z, ZHANG Z J. Preparation of the microfibrillated cellulose and its application in the food packaging paper[J]. Applied Mechanics and Materials, 2013, 469: 87-90.
邵平, 于江, 陈杭君, 等. 食品包装涂布纸生物聚合物基质分类及应用[J]. 食品与发酵工业, 2020, 46(2): 286-292.
SHAO P, YU J, CHEN H J, et al. Classification and application of biopolymer matrix for food packaging coated paper[J]. Food and Fermentation Industries, 2020, 46(2): 286-292.
Vaezi K, Asadpour G, Sharifi H. Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films[J]. International Journal of Biological Macromolecules, 2019, 124: 519-529.
Hassan E A, Hassan M L, Abou-Zeid R E, et al. Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating[J]. Industrial Crops and Products, 2016, 93: 219-226.
Savadekar N R, Mhaske S T. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films[J]. Carbohydrate Polymers, 2012, 89(1): 146-151.
DAI L, LONG Z, CHEN J, ET Al. Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5477-5485.
Ahmadzadeh S, Nasirpour A, Keramat J, et al. Nanoporous cellulose nanocomposite foams as high insulated food packaging materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468: 201-210.
Ahmadzadeh S, Keramat J, Nasirpour A, et al. Structural and mechanical properties of clay nanocomposite foams based on cellulose for the food‐packaging industry[J]. Journal of Applied Polymer Science, 2016, 133(2):42079.
鲍园园,庞少峰,赵向飞,等.生物质秸秆的改性及其发泡材料的应用研究进展[J]. 功能材料, 2021, 52(4): 4071-4082.
BAO Y Y, PANG S F, ZHAO X F, et al. Progress in modification of biomass straw and application of foaming materials[J]. Journal of Functional Materials, 2021, 52(4): 4071-4082.
Nechita P, Năstac S M. Overview on foam forming cellulose materials for cushioning packaging applications[J]. Polymers, 2022, 14(10): 1963.
李宴新,王立军. 浅谈纤维素基发泡缓冲包装材料的开发与缓冲性能研究[J]. 今日印刷, 2020(7): 77-78.
梁双,苏琼,王彦斌,等. 植物纤维发泡材料的研究进展[J]. 当代化工研究, 2018(12): 177-178.
LIANG S, SU Q, WANG Y B, et al. Research progress of plant fiber foaming materials[J]. Modern Chemical Research, 2018(12): 177-178.
Glenn G M, Orts W J. Properties of starch-based foam formed by compression/explosion processing[J]. Industrial Crops and Products, 2001, 13(2): 135-143.
赵娜, 李倩, PARK C. 聚乙烯醇/微纤化纤维素复合微发泡材料的制备[J]. 化工学报, 2015, 66(2): 806-813.
ZHAO N, LI Q, PARK C. Foaming of poly (vinyl alcohol)/microfibrillated cellulose composites[J]. CIESC Journal, 2015, 66(2): 806-813.
储富祥, 王春鹏, 李守海, 等. 木质纤维增强阻燃泡沫材料及其加工方法: CN102061059A[P]. 2011-05-18.
李坚, 卢芸, 孙庆丰, 等. 一种木质纤维素泡沫材料的制备方法: CN103131038B[P]. 2014-09-24.
李昊津,卫灵君,孙昊,等. 低碳循环纤维模塑包装产业的发展趋势探讨[J]. 绿色包装, 2022(1): 15-19.
LI H J, WEI L J, SUN H, et al. Discussion on development trend of low carbon recycling pulp molding packaging industry[J]. Green Packaging, 2022(1): 15-19.
姚培培. 木质剩余物制备造型类模塑包装材料研究[D]. 哈尔滨:东北林业大学, 2015.
Didone M, Saxena P, Brilhuis-Meijer E, et al. Moulded pulp manufacturing: overview and prospects for the process technology[J]. Packaging Technology and Science, 2017, 30(6): 231-249.
Eagleton D G, Marcondes J A. Cushioning properties of moulded pulp[J]. Packaging Technology and Science, 1994, 7(2): 65-72.
陈芳锐, 蒋志辉, 王访平, 等. 智能包装的发展应用及其前景[J]. 中国包装, 2022, 42(5): 10-16.
Ellouze M, Augustin J C. Applicability of biological time temperature integrators as quality and safety indicators for meat products[J]. International Journal of Food Microbiology, 2010, 138(1/2): 119-129.
Kim J U, Ghafoor K, Ahn J, et al. Kinetic modeling and characterization of a diffusion-based time-temperature indicator (TTI) for monitoring microbial quality of non-pasteurized Angelica juice[J]. LWT-Food Science and Technology, 2016, 67: 143-150.
Tsironi T, Ronnow P, Giannoglou M, et al. Developing suitable smart TTI labels to match specific monitoring requirements: The case of Vibrio spp. growth during transportation of oysters[J]. Food Control, 2017, 73: 51-56.
SUN C, ZHU D, JIA H, et al. Humidity and heat dual response cellulose nanocrystals/poly (N-isopropylacrylamide) composite films with cyclic performance[J]. ACS applied materials & interfaces, 2019, 11(42): 39192-39200.
CHEN H, HOU A, ZHENG C, ET al. Light-and humidity-responsive chiral nematic photonic crystal films based on cellulose nanocrystals[J]. ACS applied materials & interfaces, 2020, 12(21): 24505-24511.
Pourjavaher S, Almasi H, Meshkini S, et al. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract[J]. Carbohydrate Polymers, 2017, 156: 193-201.
Mohebi E, Marquez L. Intelligent packaging in meat industry: An overview of existing solutions[J]. Journal of Food Science and Technology, 2015, 52(7): 3947-3964.
胡云峰, 陈君然, 贺业鑫, 等. 食品用CO2敏感型指示卡研究[J]. 中国粮油学报. 2015, 30(4): 125-129.
HU Y F, CHEN J R, HE Y X, et al. Development of CO2-sensitive indicator card for packaging food[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(4): 125-129.
LU P, YANG Y, LIU R, et al. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging[J]. Carbohydrate Polymers, 2020, 249: 116831.
微信公众号