基于全生命周期评价法的雄安新区某木混结构建筑碳排放及其减碳效果研究
Study on Carbon Emission and Its Reduction Effect of Timber-Concrete Constructions in Xiong’an New District Based on Life Cycle Assessment
- 2022年36卷第5期 页码:63-70
DOI: 10.12326/j.2096-9694.2022070
扫 描 看 全 文
1.北京林业大学材料科学与技术学院,北京 100083
2.北京林业大学水土保持学院,北京 100083
3.林创咨询(上海)有限公司北京分公司,北京 100020
4.北京城建集团有限责任公司土木工程总承包部,北京 100088
扫 描 看 全 文
李瑜,梅诗意,孟鑫淼等.基于全生命周期评价法的雄安新区某木混结构建筑碳排放及其减碳效果研究[J].木材科学与技术,2022,36(05):63-70.
LI Yu,MEI Shi-yi,MENG Xin-miao,et al.Study on Carbon Emission and Its Reduction Effect of Timber-Concrete Constructions in Xiong’an New District Based on Life Cycle Assessment[J].Chinese Journal of Wood Science and Technology,2022,36(05):63-70.
为分析河北雄安新区白洋淀码头的3栋木混结构建筑较等效钢混结构建筑的减碳效果,根据等效替换因子,确定等效钢混结构建筑建材用量,并依照GB/T 51366—2019《建筑碳排放计算标准》,基于全生命周期评价法,对3栋木混结构建筑及等效钢混结构建筑进行碳排放计算。结果表明,木混结构建筑的减碳效果主要体现在建材生产及运输阶段,建造及拆除阶段碳排放差异较小。与等效钢混结构建筑相比,木混结构建筑在建材生产阶段的碳排放下降约10%,考虑木材碳固存量则下降约19%。木混结构建筑地上部分建材生产阶段的碳排放下降18%~25%,考虑木材碳固存量则下降40%~46%。
In order to study the effect of three timber-concrete constructions on the carbon reduction in Baiyangdian Wharf of Xiong'an new area in Hebei Province, it was compared with the equivalent steel-concrete constructions. In this paper, according to the equivalent replacement factor, the amount of building materials of equivalent steel-concrete constructions was determined. In accordance with GB/T 51366—2019 ,Standard for building carbon emission calculation, the carbon emission of three timber-concrete constructions and equivalent steel-concrete constructions were calculated by using the life-cycle assessment method. The results showed that the carbon reduction effect of timber-concrete constructions was mostly reflected in building material production and transportation period, and the carbon emission difference in construction and demolition period was relatively small. Compared with equivalent steel-concrete constructions, the carbon emission of timber-concrete constructions decreased about 10% in material production period, and about 19% in terms of carbon sequestration of wood. Carbon emission of the above-ground timber-concrete constructions decreased about 18%~25% in material production period, and about 40%~46% after considering carbon sequestration.
木结构建筑等效钢混结构碳排放碳固存全生命周期评价
timber constructionsequivalent steel-concrete constructionscarbon emissioncarbon sequestrationlife-cycle assessment
BP Statistical Review of World Energy 2022[R]. London: BP, 2022
清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告-2022-城镇住宅专题[M]. 北京: 中国建筑工业出版社, 2021.
张时聪, 杨芯岩, 徐伟. 现代木结构建筑全寿命期碳排放计算研究[J]. 建设科技, 2019(18): 45-48.
ZHANG S C, YANG X Y, XU W. Study on life cycle carbon emission of modern wood building[J]. Construction Science and Technology, 2019(18): 45-48.
PAN W, TENG Y. A systematic investigation into the methodological variables of embodied carbon assessment of buildings[J]. Renewable and Sustainable Energy Reviews, 2021, 141.
Zeitz A, Griffin C T, Dusicka P. Comparing the embodied carbon and energy of a mass timber structure system to typical steel and concrete alternatives for parking garages[J]. Energy and Buildings, 2019, 199(SEP.):126-133.
Hens I, SolnoskyR, Brown N. Design space exploration for comparing embodied carbon in tall timber structural systems-ScienceDirect[J]. Energy and Buildings, 2021, 244.
Robati M, Oldfield P, Nezhad A A, et al. Carbon value engineering: A framework for integrating embodied carbon and cost reduction strategies in building design[J]. Building and Environment, 2021, 192(3):107620.
Hart J, D'Amico B, Pomponi F. Whole﹍ife embodied carbon in multistory buildings: Steel, concrete and timber structures[J]. Journal of Industrial Ecology, 2021, 25(2):403-418.
徐霖. 轻型木结构建筑节能性能和碳排放分析研究[D].北京: 北京林业大学,2018.
胡家航, 姬晓迪, 代倩, 等. 基于生命周期评价的井干式木结构建筑环境影响研究[J]. 林业工程学报, 2017, 2(6): 133-138.
HU J H, JI X D, DAI Q, et al. Environmental impact of log house based on life cycle assessment[J]. Journal of Forestry Engineering, 2017, 2(6): 133-138.
徐洪澎, 李恺文, 刘哲瑞. 基于类型比较的严寒地区被动式木结构建筑碳排放分析[J]. 建筑技术, 2021, 52(3): 324-328.
XU H P, LI K W, LIU Z R. Carbon emission analysis of passive timber buildings in sever cold region based on type comparison[J]. Architecture Technology, 2021, 52(3): 324-328.
GB/T 51366—2019,建筑碳排放计算标准[S].
Cordier S, Robichaud F, Blanchet P, et al. Regional environmental life cycle consequences of material substitutions: the case of increasing wood structures for non-residential buildings[J]. Journal of Cleaner Production, 2021, 328: 129671.
Milaj, Sinha, Miller, et al. Environmental utility of wood substitution in commercial buildings using life-cycle analysis[J]. Wood Fiber Sci, 2017, 49(3): 338-358.
代倩, 胡家航, 姬晓迪, 等. 建筑用集成材制造技术的环境效能影响[J]. 林业工程学报, 2018, 3(4): 46-50.
DAI Q, HU J H, JI X D, et al. Environmental efficiency effect of building glulam manufacturing technology[J]. Journal of Forestry Engineering, 2018, 3(4): 46-50.
王珊珊,张寒,杨红强.中国人造板行业的生命周期碳足迹和能源耗用评估[J].资源科学,2019, 41(03):521-531.
张方文. 定向刨花板生命周期评价(LCA)及环境影响评价研究[D]. 北京: 中国林业科学研究院, 2017.
吴淑艺. 基于工程量清单的建筑工程碳排放研究: 以福建省为例[D]. 福州: 福建农林大学, 2017.
曾杰, 俞海勇. 多层混凝土结构建材阶段引入碳排放研究[J]. 绿色建筑, 2019, 11(1): 17-19.
ZENG J, YU H Y. Study on carbon emission introduced in the stage of building materials for multi-story concrete structures[J]. Green Building, 2019, 11(1): 17-19.
沈丹丹. 建筑全生命周期碳排放量计算模型[J]. 建筑施工, 2021, 43(10): 2162-2166.
SHEN D D. Calculation model of carbon emission in full life cycle of buildings[J]. Building Construction, 2021, 43(10): 2162-2166.
李兵. 低碳建筑技术体系与碳排放测算方法研究[D]. 武汉: 华中科技大学, 2012.
崔鹏. 建筑物生命周期碳排放因子库构建及应用研究[D]. 南京: 东南大学, 2015.
王玉. 工业化预制装配建筑的全生命周期碳排放研究[D]. 南京: 东南大学, 2016.
李博, 刘存歧, 王军霞, 等. 白洋淀湿地典型植被芦苇储碳固碳功能研究[J]. 农业环境科学学报, 2009, 28(12): 2603-2607.
LI B, LIU C Q, WANG J X, et al. Carbon storage and fixation function by Phragmites australis, a typical vegetation in Baiyangdian Lake[J]. Journal of Agro-Environment Science, 2009, 28(12): 2603-2607.
微信公众号