横纹压缩荷载下木材的力学性能研究进展
Review of Mechanical Behavior of Wood under Compression Load Perpendicular-to-Grain
- 2022年36卷第5期 页码:1-8
DOI: 10.12326/j.2096-9694.2022057
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
扫 描 看 全 文
武国芳,孙竞成,傅峰等.横纹压缩荷载下木材的力学性能研究进展[J].木材科学与技术,2022,36(05):1-8.
WU Guo-fang,SUN Jing-cheng,FU Feng,et al.Review of Mechanical Behavior of Wood under Compression Load Perpendicular-to-Grain[J].Chinese Journal of Wood Science and Technology,2022,36(05):1-8.
木材作为一种生物质材料,在横纹压缩荷载下表现出屈服点低、变形大,并存在二次应变硬化的受力特征。木材横纹受压在实际应用中较为常见且难以避免,在工程结构中如果不能妥善处理,可导致局部变形或变形不均匀等问题,威胁结构安全;在木材改性中,横纹压缩性能用于调整和优化木材压缩改性工艺;木材作为缓冲材料应用时,横纹压缩性能用于评估和优化木材的减震吸能性能:因此横纹压缩荷载下木材的力学性能研究具有重要意义。本文梳理横纹压缩荷载下木材力学性能的研究现状,包括试验研究、失效机理、有限元模型和理论模型等,总结现有研究的结论和进展,分析现有研究的不足,提出后续研究方向。,2
As a bio-material, wood presents the low yield strength, extra-large deformation, and two-stage hardening behavior under perpendicular-to-grain compression load. The mechanical behavior of wood is quite important in many aspects: 1) building engineering, which needs be handled with great care to avoid excessive local and uneven deformation that may threaten the safety of structure; 2) wood modification, which helps to improve the processing technology; 3) as cushion materials, which help to evaluate and optimize its energy consumption behavior. Thus, it is essential to investigate the mechanical behavior of wood under perpendicular-to-grain compression load. This paper reviewed the research related to the behavior of wood under perpendicular-to-grain compression, including the experimental research, finite element models, and theoretical models. The shortcomings of the available research were analyzed, while suggestions for the future research were proposed.
木材横纹压缩大变形失效机理理论和模型
wood compression perpendicular-to-grainlarge deformationfailure mechanismtheory and model
Price A T. A Mathematical discussion on the structure of wood in relation to its elastic properties[J]. Philosophical Transactions of the Royal Society of London. Series A, 1929, 228: 1-62.
Ross R J, USDA Forest Service F P L. Wood handbook: wood as an engineering material[R]. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2010.
Thelandersson S, Larsen J H. Timber engineering[M]. John Wiley & Sons, 2003.
Bodig J. The effect of anatomy on the initial stress strain relationship in transverse compression[J]. Forest Product Journal. 1965, 15(5): 197-202.
Youngs R L. Mechanical properties of red oak related to drying[J]. Forest Product Journal, 1957, 7: 315-324.
Gibson L J, Ashby M F. Cellular solids, structure and properties[M]. New York: Pergamon Press, 1988.
Tabarsa T, Chui Y H. Characterizing microscopic behavior of wood under transverse compression. Part II. Effect of species and loading direction[J]. Wood and Fiber Science, 2001, 33(2): 223-232.
Courtney T H. Mechanical behaviour of materials[M]. Waveland Press, 2005.
Beery W H, Ifju G, McLain T E. Quantitative wood anatomy—relating anatomy to transverse tensile strength[J]. Wood and Fiber Science, 1983, 15(4): 395-407.
王双永, 郭婷, 邓昊, 等. 穿斗式木结构直榫边节点承载性能试验研究[J]. 木材科学与技术, 2022, 36(1): 57-62. DOI: 10.12326/j.2096-9694.2021060http://dx.doi.org/10.12326/j.2096-9694.2021060.
WANG S Y, GUO T, DENG H, et al. Study on seismic performance of straight tenon-type joints in Chuan-dou style timber structure[J]. Chinese Journal of Wood Science and Technology, 2022, 36(1): 57-62. DOI: 10.12326/j.2096-9694.2021060http://dx.doi.org/10.12326/j.2096-9694.2021060.
Kunesh R H. Strength and elastic properties of wood in transverse compression[J]. Forest Products Journal, 1968, 18(1): 65-72.
WANG S Y. Studies on the assembled body of wood in the transverse compression. IV. The observation of the deformation of the isolated wood tissues by sump method[J]. Mokuzai Gakkaishi, 1974, 20: 172-176.
Aiuchi T, Ishida S. An observation of the failure process of softwood under compression perpendicular to the grain in the scanning electron microscope. III. On the radial compression (in Japanese)[J]. Research Bulletin for Hokkaido University. 1981, 38:73-85.
Easterling K E, Harrysson R, Gibson L J, et al. On the mechanics of Balsa and other woods[J]. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences, 1982, 383(1784): 31-41.
Ando K, Onda H. Mechanism for deformation of wood as a honeycomb structure I: effect of anatomy on the initial deformation process during radial compression[J]. Journal of Wood Science, 1999, 45(2): 120-126.
Ando K, Onda H. Mechanism for deformation of wood as a honeycomb structure II: first buckling mechanism of cell walls under radial compression using the generalized cell model[J]. Journal of Wood Science, 1999, 45(3): 250-253.
Müller U, Gindl W, Teischinger A. Effects of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain[J]. IAWA Journal, 2003, 24(2): 117-128.
边明明. 连续压缩载荷下木材力学性能及微观结构变化定量表征[D]. 北京: 中国林业科学研究院, 2011.
BIAN M M. Effects of micro-structure on wood mechanical properties under continuous compression[D]. Beijing: Chinese Academy of Forestry, 2011.
HUANG C, GONG M, CHUI Y H, et al. Mechanical behaviour of wood compressed in radial direction-part I. New method of determining the yield stress of wood on the stress-strain curve[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 186-195.
边明明, 殷亚方, 宋坤霖, 等. 不同压缩加载速度对杉木微观结构和力学性能影响[J]. 建筑材料学报, 2012, 15(4): 575-580.
BIAN M M, YIN Y F, SONG K L, et al. Effect of loading rate on microstructure characteristics and mechanical properties of Chinese fir[J]. Journal of Building Materials, 2012, 15(4): 575-580.
Kennedy R W. Wood in transverse compression: Influence of some anatomical variables and density on behavior[J]. Forest Product Journal, 1968, 18: 36-40.
Gibson L J, Easterling K E, Ashby M F. The structure and mechanics of cork[J]. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences, 1981, 377(1769): 99-117.
Fortino S, Hradil P, Salminen L I, et al. A 3D micromechanical study of deformation curves and cell wall stresses in wood under transverse loading[J]. Journal of Materials Science, 2015, 50(1): 482-492.
Holmberg S, Persson K, Petersson H. Nonlinear mechanical behaviour and analysis of wood and fibre materials[J]. Computers & Structures, 1999, 72(4/5): 459-480.
De Magistris F, Salmén L. Finite element modelling of wood cell deformation transverse to the fibre axis[J]. Nordic Pulp and Paper Research Journal, 2008, 23(2):240-246.
WU G, SHEN Y, FU F, et al. Study of the Mechanical properties of wood under transverse compression using Monto Carlo simulation-based stochastic FE analysis[J]. Forests, 2021, 13(1): 32.
王东. 顺纹拉伸和弯曲作用下的木材破坏机理研究[D]. 南京: 南京林业大学, 2020.
WANG D. Wood fracture mechanisms under longitudinal tensile and bend loading[D]. Nanjing: Nanjing Forestry University, 2020.
ZHONG W, Rusinek A, Jankowiak T, et al. Experimental and numerical investigation on compression orthotropic properties of spruce wood in axial and transverse loading directions[J]. Engineering Transactions, 2015, 62(4): 381-401.
钟卫洲, 邓志方, 魏强, 等. 不同加载速率下木材失效行为的多尺度数值分析[J]. 中国测试, 2016, 42(10): 79-84.
ZHONG W Z, DENG Z F, WEI Q, et al. Multi–scale numerical analysis on failure behavior of wood under different speed loading conditions[J]. Chinese China Measurement & Test, 2016, 42(10): 79-84.
Nairn J A. Numerical simulations of transverse compression and densification in wood[J]. Wood and fiber science, 2006, 38(4): 576-591.
Aimene Y E, Nairn J A. Simulation of transverse wood compression using a large-deformation, hyperelastic–plastic material model[J]. Wood Science and Technology, 2015, 49(1): 21-39.
Perré P, Almeida G, Ayouz M, et al. New modelling approaches to predict wood properties from its cellular structure: image-based representation and meshless methods[J]. Annals of Forest Science, 2016, 73(1): 147-162.
Persson K. Micromechanical modelling of wood and fiber properties[D]. Sweden, Lund: Lund University, 2000.
Sjölund J, Karakoç A, Freund J. Accuracy of regular wood cell structure model[J]. Mechanics of Materials, 2014, 76: 35-44.
ZHOU H, ZHOU X. FE modeling for bolted wood connection using a porous constitutive model. Advances in Civil Engineering, 2020:1-8.
Hong J P, Barrett D. Three-dimensional finite-element modeling of nailed connections in wood[J]. Journal of Structural Engineering, 2010, 136(6): 715-722.
ZHOU T, GUAN Z W. A new approach to obtain flat nail embedding strength of double-sided nail plate joints[J]. Construction and Building Materials, 2011, 25(2): 598-607.
陈志勇, 祝恩淳, 潘景龙. 复杂应力状态下木材力学性能的数值模拟[J]. 计算力学学报, 2011, 28(4): 629-634, 640.
CHEN Z Y, ZHU E C, PAN J L. Numerical simulation of mechanical behaviour of wood under complex stress[J]. Chinese Journal of Computational Mechanics, 2011, 28(4): 629-634, 640.
ZHONG Y, WU G F, FU F, et al. A novel constitutive model for the porosity related super-large deformation and anisotropic behavior of wood under perpendicular to grain compression[J]. Wood Science and Technology, 2022, 56(2): 553-571.
武国芳, 龚迎春, 钟永, 等. 榫头局部正交层板结构对直榫节点受力性能的影响[J]. 林业科学, 2021, 57(3): 117-125.
WU G F, GONG Y C, ZHONG Y, et al. Effects of locally cross-laminating in tenon on the structural performance of straight tenon and mortise joints[J]. Scientia Silvae Sinicae, 2021, 57(3): 117-125.
Kanaya N. The relation between the elastic modulus and the porosity of wood[J]. Wood Research, 1964, 33: 47-55.
Nakano T. Coarse graining of wood cell arrangement and density dependence of elasticity[J]. Holzforschung, 2013, 67(1): 67-73.
Gillis P P. Orthotropic elastic constants of wood[J]. Wood Science and Technology, 1972, 6(2): 138-156.
Koponen S, Toratti T, Kanerva P. Modelling longitudinal elastic an shrinkage properties of wood[J]. Wood Science and Technology, 1989, 23(1): 55-63.
Koponen S, Toratti T, Kanerva P. Modelling elastic and shrinkage properties of wood based on cell structure[J]. Wood Science and Technology, 1991, 25(1): 25-32.
Kahle E, Woodhouse J. The influence of cell geometry on the elasticity of softwood[J]. Journal of Materials Science, 1994, 29(5): 1250-1259.
Watanabe U, Norimoto M, Ohgama T, et al. Tangential Young's modulus of coniferous early wood investigated using cell models[J]. Holzforschung, 1999, 53(2): 209-214.
Watanabe U, Norimoto M, Morooka T. Cell wall thickness and tangential Young's modulus in coniferous early wood[J]. Journal of Wood Science, 2000, 46(2): 109-114.
Watanabe U, Fujita M, Norimoto M. Transverse Young's moduli and cell shapes in coniferous early wood[J]. Holzforschung, 2002, 56(1): 1-6.
相关文章
相关作者
相关机构
微信公众号