两种干燥方式对碳纳米管/纳米纤维素气凝胶结构与性能的影响
Effects of Two Drying Methods on the Structure and Properties of Nanocellulose/Carbon Nanotubes Aerogels
- 2022年36卷第5期 页码:43-49
DOI: 10.12326/j.2096-9694.2022052
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
2.林业资源高效加工利用协同创新中心,南京林业大学,江苏南京 210037
3.美国田纳西大学再生碳中心,诺克斯维尔 37996
扫 描 看 全 文
常焕君,张龙飞,吕少一等.两种干燥方式对碳纳米管/纳米纤维素气凝胶结构与性能的影响[J].木材科学与技术,2022,36(05):43-49.
CHANG Huan-jun,ZHANG Long-fei,LYU Shao-yi,et al.Effects of Two Drying Methods on the Structure and Properties of Nanocellulose/Carbon Nanotubes Aerogels[J].Chinese Journal of Wood Science and Technology,2022,36(05):43-49.
采用超临界干燥和冷冻干燥法制备了碳纳米管/纳米纤维素气凝胶,探讨两种干燥方法对气凝胶的微观形貌、化学结构、结晶性、比表面积、孔隙结构和电化学性能的影响规律。结果表明:两种干燥方法对气凝胶微观结构、结晶性、比表面积、孔隙结构和电化学性能影响显著,而对其化学结构影响有限;超临界干燥的SWCNT/CNF气凝胶呈现纤丝状多孔网络结构,结晶度为56.41%,比表面积和孔体积分别为266.39 m²/g和0.77 cm³/g,面积比电容为265.46 mF/cm,2,;而冷冻干燥的样品则为片状结构,结晶度为31.37%,比表面积和孔体积分别为47.78 m²/g和0.15 cm³/g,面积比电容为176.04 mF/cm,2,;超临界干燥的气凝胶具有更高的结晶度、更大的比表面积和孔体积,能够为电极材料提供更多的活性位点,提升其电化学性能。本研究为制备高性能电极材料提供了研究思路。
Carbon nanotubes/nanocellulose aerogels were prepared by supercritical drying and freeze drying respectively. The effects of two drying methods on the morphology, chemical structure, crystallinity, specific surface area, pore structure and electrochemical properties of aerogel were investigated. The results showed that the two drying methods had a significant effect on the microstructure, crystallinity, specific surface area, pore structure and electrochemical properties of aerogel, but had limited effect on its chemical structure. The supercritical drying SWCNT/CNF aerogel showed a fibrous porous network structure with a crystallinity of 56.41%, a specific surface area of 266.39 m²/g, a pore volume of 0.77 cm³/g and an area specific capacity of 265.46 mF/cm,2,. However, the freeze-dried sample had a flake structure with 31.37 % crystallinity, 47.78 m²/g specific surface area, 0.15 cm³/g pore volume and 176.04 mF/cm,2, area specific capacity, respectively. The supercritical drying aerogel had higher crystallinity, specific surface area and pore volume, which could provide more active sites for electrode materials and improve their electrochemical performance. This study provided a research idea for the preparation of high-performance electrode materials.
气凝胶纳米纤维素碳纳米管超临界干燥冷冻干燥
Aerogelnanocellulosecarbon nanotubessupercritical dryingfreeze drying
李坚, 焦月. 木质基新型能量存储与转换材料研究进展[J]. 森林与环境学报, 2020, 40(4): 337-346.
LI J, JIAO Y. Novel wood-based energy storage and conversion materials[J]. Journal of Forest and Environment, 2020, 40(4): 337-346.
吕少一, 傅峰, 王思群, 等. 纳米纤维素基导电复合材料研究进展[J]. 林业科学, 2015, 51(10): 117-125.
LYU S Y, FU F, WANG S Q, et al. Advances in nanocellulose-based electroconductive composites[J]. Scientia Silvae Sinicae, 2015, 51(10): 117-125.
王思群, 吕少一, 黄彪, 等. 木质纳米功能复合材料制备技术[M]. 北京: 科学出版社, 2020.
De Silva T, Damery C, Alkhaldi R, et al. Carbon nanotube based robust and flexible solid-state supercapacitor[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56004-56013.
WU Y Z, ZHAO X W, SHANG Y Y, et al. Application-driven carbon nanotube functional materials[J]. ACS Nano, 2021, 15(5): 7946-7974.
Hamedi M M, Hajian A, Fall A B, et al. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes[J]. ACS Nano, 2014, 8(3): 2467-2476.
段玉洁, 梁程耀, 朱浩彤, 等. 纤维素气凝胶的制备及应用[J]. 塑料科技, 2021, 49(5): 93-98.
DUAN Y J, LIANG C Y, ZHU H T, et al. Preparation and application of cellulose aerogel[J]. Plastics Science and Technology, 2021, 49(5): 93-98.
LYU S Y, CHEN Y P, ZHANG L F, et al. Nanocellulose supported hierarchical structured polyaniline/nanocarbon nanocomposite electrode via layer-by-layer assembly for green flexible supercapacitors[J]. RSC Advances, 2019, 9(31): 17824-17834.
LI Y W, JIANG H, HAN B B, et al. Drying of cellulose nanocrystal gel beads using supercritical carbon dioxide[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5): 1651-1659.
CHEN Y M, ZHANG L, YANG Y, et al. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications[J]. Advanced Materials, 2021, 33(11): 2005569.
Durairaj V, Li P P, Liljeström T, et al. Functionalized nanocellulose/multiwalled carbon nanotube composites for electrochemical applications[J]. ACS Applied Nano Materials, 2021, 4(6): 5842-5853.
吕少一, 陈艳萍, 韩申杰, 等. 交联剂用量对纳米纤维素交联气凝胶结构的影响[J]. 木材工业, 2017, 31(6): 10-14.
LYU S Y, CHEN Y P, HAN S J, et al. Influences of crosslink usage on structure of nanocellulose cross-linked aerogels[J]. China Wood Industry, 2017, 31(6): 10-14.
Segal L, Creely J J, JrMartin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
相关作者
相关机构
微信公众号