杉木应压木和对应木的水分吸附特性比较研究
Comparative Studies on Water Vapor Sorption Characteristics between Compression Wood and Opposite Wood of Chinese Fir
- 2022年36卷第5期 页码:37-42
DOI: 10.12326/j.2096-9694.2022018
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
扫 描 看 全 文
李珠,殷方宇,蒋佳荔等.杉木应压木和对应木的水分吸附特性比较研究[J].木材科学与技术,2022,36(05):37-42.
LI Zhu,YIN Fang-yu,JIANG Jia-li,et al.Comparative Studies on Water Vapor Sorption Characteristics between Compression Wood and Opposite Wood of Chinese Fir[J].Chinese Journal of Wood Science and Technology,2022,36(05):37-42.
以杉木 (,Cunninghamia lanceolata,) 应压木和对应木为研究对象,采用动态水蒸气吸附仪,借助GAB模型和H-H模型探究其水分吸附特性的异同。结果表明,当相对湿度低于70%时,应压木与对应木的平衡含水率较为接近;当相对湿度高于70%时,应压木的平衡含水率低于对应木。应压木和对应木均表现出明显的吸湿滞后现象,吸湿滞后值在相对湿度70%时均达到最大,分别为3.11%和3.28%。GAB模型和H-H模型均可用于描述应压木和对应木的水分吸附等温线(,R,2,>,0.995)。通过GAB模型计算得出应压木和对应木的单分子层吸附水含量分别为6.00%和5.40%;通过H-H模型计算得出应压木的单分子层吸附水最大含量(4.93%)略高于对应木(4.72%),而应压木的多分子层吸附水最大含量(13.57%)则低于对应木(14.79%)。杉木应压木与对应木水分吸附行为的差异与其化学组分含量密切相关。,2
In this research, differences in water adsorption behavior between the compression wood (CW) and the opposite wood (OW) from Chinese fir (,Cunninghamia lanceolata,) were investigated with the dynamic water vapor sorption analysis (DVS) using the GAB model and H-H model. Results showed that when the relative humidity (RH) of specimens was lower than 70%, the equilibrium moisture content (EMC) of CW was close to OW. When RH was above 70%, the EMC of CW was lower than that of OW. The hygroscopic hysteresis was observed for both CW and OW, and the max values of hysteresis of CW and OW was 3.11% and 3.28%, respectively. The GAB model and H-H model can be used to describe the water adsorption isotherms of CW and OW, with ,R,2, both above 0.995. In the GAB model, the monolayer molecules water adsorption for CW and OW were 6.00% and 5.40%, respectively. In the H-H model, the maximum of monolayer molecules water adsorption of CW (4.93%) was slightly higher than that of OW (4.72%), while the maximum of polylayer molecules water adsorption of CW (13.57%) was lower than that of OW (14.79%). The differences in water adsorption behavior of CW and OW were closely related to its chemical constituent contents.
杉木应压木对应木水分吸附GAB模型H-H模型
Chinese fircompression woodopposite woodwater adsorptionGAB modelH-H model
Gardiner B, Barnett J, Saranpää P, et al. The Biology of Reaction Wood[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.
Purusatama B D, Kim N H. Quantitative anatomical characteristics of compression wood, lateral wood, and opposite wood in the stem wood of Ginkgo biloba L[J]. BioResources, 2018, 13(4): 8076-8088.
Purusatama B D, Choi J K, Lee S H, et al. Microfibril angle, crystalline characteristics, and chemical compounds of reaction wood in stem wood of Pinus densiflora[J]. Wood Science and Technology, 2020, 54(1): 123-137.
Tarmian A, Azadfallah M. Variation of cell features and chemical composition in spruce consisting of opposite, normal, and compression wood[J]. Bioresources, 2009, 4: 194-204.
Brémaud I, Ruelle J, Thibaut A, et al. Changes in viscoelastic vibrational properties between compression and normal wood: roles of microfibril angle and of lignin[J]. Holzforschung, 2013, 67(1): 75-85.
廖声熙, 崔凯, 孙庆丰, 等. 云南松人工林正常木与应压木物理力学性质比较[J]. 西北林学院学报, 2013, 28(6): 161-164.
LIAO S X, CUI K, SUN Q F, et al. Comparative study on physical and mechanical properties of normal and compressed woods from Pinus yunnanensis plantations[J]. Journal of Northwest Forestry University, 2013, 28(6): 161-164.
张胜龙, 刘京晶, 楼雄珍, 等. 杉木应压木木质部细胞形态特征及主要代谢成分表征[J]. 北京林业大学学报, 2015, 37(5): 126-133.
ZHANG S L, LIU J J, LOU X Z, et al. Morphological characteristics of cells and main metabolic components in xylem of Cunninghamia lanceolata compression wood[J]. Journal of Beijing Forestry University, 2015, 37(5): 126-133.
PENG H, Salmén L, Stevanic J S, et al. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy[J]. Planta, 2019, 250(1): 163-171.
ZHAN T Y, LYU J X, Eder M. In situ observation of shrinking and swelling of normal and compression Chinese fir wood at the tissue, cell and cell wall level[J]. Wood Science and Technology, 2021, 55(5): 1359-1377.
Hill C, Moore J, Jalaludin Z, et al. Influence of earlywood/latewood and ring position upon water vapour sorption properties of Sitka spruce[J]. International Wood Products Journal, 2011, 2(1): 12-19.
ZHANG X X, LI J, YU Y, et al. Investigating the water vapor sorption behavior of bamboo with two sorption models[J]. Journal of Materials Science, 2018, 53(11): 8241-8249.http://dx.doi.org/10.1007/s10853-018-2166-yhttp://dx.doi.org/10.1007/s10853-018-2166-y
高鑫, 周凡, 周永东. 高温热处理木材吸湿特性[J]. 林业科学, 2019, 55(7): 119-127.
GAO X, ZHOU F, ZHOU Y D. Sorption isotherms characteristics of high temperature heat-treated wood[J]. Scientia Silvae Sinicae, 2019, 55(7): 119-127.
徐恩光, 林兰英, 李善明, 等. 微波处理对樟子松木材等温吸湿特性的影响[J]. 木材科学与技术, 2021, 35(1): 20-25.
XU E G, LIN L Y, LI S M, et al. Effect of microwave treatment on moisture sorption isotherm of Mongolian Scotch pine[J]. Chinese Journal of Wood Science and Technology, 2021, 35(1): 20-25.
SHEN X S, GUO D K, JIANG P, et al. Water vapor sorption mechanism of furfurylated wood[J]. Journal of Materials Science, 2021, 56(19): 11324-11334.
杨利梅, 刘杏娥, 江泽慧, 等. 单叶省藤材水分吸附特性[J]. 林业科学, 2021, 57(7): 150-157.
YANG L M, LIU X G, JIANG Z H, et al. Water adsorption characteristics of Calamus simplicifolius cane[J]. Scientia Silvae Sinicae, 2021, 57(7): 150-157.
Olsson A M, Salmén L. The softening behavior of hemicelluloses related to moisture[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2003: 184-197.
Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood–water interactions[J]. Wood Science and Technology, 2013, 47(1): 141-161.
Hill C A S, Norton A, Newman G. The water vapor sorption behavior of natural fibers[J]. Journal of Applied Polymer Science, 2009, 112(3): 1524-1537.
SONG K L, YIN Y F, Salmén L, et al. Changes in the properties of wood cell walls during the transformation from sapwood to heartwood[J]. Journal of Materials Science, 2014, 49(4): 1734-1742.
高玉磊. 高温热处理杉木的吸湿吸水性变化规律及其机理研究[D]. 北京: 中国林业科学研究院, 2019
Spalt H A. The fundamentals of water vapor sorption by wood[J]. Forest Product Journal,1958, 8: 288-295.
刘颖, 谢杰, 全鹏, 等. 白橡热压干燥材等温吸湿特性研究[J]. 林产工业, 2019, 46(7): 16-22.
LIU Y, XIE J, QUAN P, et al. Study on water sorption isotherms of white oak lumber by press drying[J]. China Forest Products Industry, 2019, 46(7): 16-22.
詹天翼, 蒯炳斌, 吕超, 等. 杨木和杉木横纹抗拉强度的含水率依存性[J]. 林业工程学报, 2019, 4(5): 34-39.
ZHAN T Y, KUAI B B, LYU C, et al. Moisture dependence of the tensile strength perpendicular to grain of poplar and Chinese fir[J]. Journal of Forestry Engineering, 2019, 4(5): 34-39.
相关作者
相关机构
微信公众号