紫外线屏蔽纳米材料及其改善木材耐光老化性能的研究进展
Research Status of Anti-Ultraviolet Nano-Agents and Their Application in Wood Anti-Photodegradation
- 2022年36卷第3期 页码:1-9
DOI: 10.12326/j.2096-9694.2022003
扫 描 看 全 文
1.北京林业大学;木质材料科学与应用教育部重点实验室,北京 100083
2.山东千森木业集团有限公司,山东临沂 273401
扫 描 看 全 文
康海娇,郭永胜,李建章.紫外线屏蔽纳米材料及其改善木材耐光老化性能的研究进展[J].木材科学与技术,2022,36(03):1-9.
KANG Hai-jiao,GUO Yong-sheng,LI Jian-zhang.Research Status of Anti-Ultraviolet Nano-Agents and Their Application in Wood Anti-Photodegradation[J].Chinese Journal of Wood Science and Technology,2022,36(03):1-9.
木材作为一类绿色可再生材料,广泛应用于室内装饰、户外木结构建筑等多个领域,由于长期光照致使木材结构老化、服务寿命降低,在木材表面构建紫外线屏蔽涂层十分重要。结合无机金属氧化物纳米粒子、层状金属氢氧化物纳米粒子、生物源类黑色素纳米粒子三类紫外线屏蔽纳米材料,针对纳米粒子在涂料中分散稳定性差、易团聚的问题,着重介绍利用核-壳包覆、主-客体组装等结构设计策略增强紫外线屏蔽纳米涂料性能的研究进展。并就紫外线屏蔽纳米涂料在木材耐光老化方面的研究与应用进行简要总结,为绿色、高效木质基材耐光老化涂料的研发提供思路。
As a green renewable material, wood is widely applied in many fields such as indoor & outdoor decoration and structure construction. In order to solve the problem of aging and reducing service life caused by long-term exposure in light, the importance of constructing UV-resistant coatings on the surface of wood is elaborated. New requirements for high efficiency and high environmental tolerance are considered for the nano-UV-resistant coatings. In this review, we mainly introduced the research progress of nano metal oxides, layered double hydroxides and bio-derived melanin particles as the UV shielding agents. With respect to the poor dispersion stability and easy agglomeration of nanoparticles, the core-shell design, host-guest assembly and other structural design strategies were briefly introduced. The application of nano-UV-resistant coatings in wood anti-photodegradation were also summarized, which will promote the development progress in the research field of nano-UV-resistant coatings for green and efficient wood materials.
木材光老化紫外线屏蔽材料纳米金属氧化物类黑色素层状金属氧化物
wood photodegradationanti-ultraviolet agentsnano metal oxidesmelaninlayered double hydroxides
李坚, 甘文涛, 王立娟. 木材仿生智能材料研究进展[J]. 木材科学与技术, 2021, 35(4): 1-14. DOI: 10.12326/j.2096-9694.2021051http://dx.doi.org/10.12326/j.2096-9694.2021051.
LI J, GAN W T, WANG L J. Research progress on wood biomimetic intelligent materials[J]. Chinese Journal of Wood Science and Technology, 2021, 35(4): 1-14. DOI: 10.12326/j.2096-9694.2021051http://dx.doi.org/10.12326/j.2096-9694.2021051.
于晓丽, 曹鸿璋, 张玉玺, 等. 二氧化铈抗紫外性能研究进展[J]. 稀土, 2013, 34(4): 80-84.
WANG X L, CAO H Z, ZHANG Y X, et al. Development of UV-shilding properties of CeO2[J]. Chinese Rare Earths, 2013, 34(4): 80-84.
于泽, 高鹤, 郑恺, 等. 纳米氧化锰表面功能化木材的制备及性质[J]. 高等学校化学学报, 2017, 38(9): 1518-1523.
YU Z, GAO H, ZHENG K, et al. Preparation and properties of surface functionalized wood by nanoscale manganese oxide[J]. Chemical Journal of Chinese Universities, 2017, 38(9): 1518-1523.
陈凯文, 彭辉, 蒋佳荔, 等. 热处理木材光变色机理及防治方法的研究进展[J]. 木材科学与技术, 2022, 36(2): 11-17. DOI: 10.12326/j.2096-9694.2021046http://dx.doi.org/10.12326/j.2096-9694.2021046.
CHEN K W, PENG H, JIANG J L, et al. Research review of photo discoloration mechanism and prevention for thermally modified wood[J]. Chinese Journal of Wood Science and Technology, 2022, 36(2): 11-17. DOI: 10.12326/j.2096-9694.2021046http://dx.doi.org/10.12326/j.2096-9694.2021046.
李博文, 韩青, 代英杰, 等. 紫外纳米屏蔽材料的研究及应用进展[J]. 当代化工, 2017, 46(12): 2583-2586.
LI B W, HAN Q, DAI Y J, et al. Research and application progress of nano UV-shielding materials[J]. Contemporary Chemical Industry, 2017, 46(12): 2583-2586.
Vlad Cristea M, Riedl B, Blanchet P. Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers[J]. Progress in Organic Coatings, 2010, 69(4): 432-441.
王升文. 改性纳米TiO2/环氧-聚氨酯三元复合材料的制备及性能研究[J]. 化工新型材料, 2019, 47(12): 54-56, 61.
WANG S W. Preparation and property of modified nano TiO2/epoxy-polyurethane composite material[J]. New Chemical Materials, 2019, 47(12): 54-56, 61.
吴健春, 路瑞芳. 金红石纳米TiO2对油漆抗紫外性能的影响[J]. 钢铁钒钛, 2015, 36(3): 26-29.
WU J C, LU R F. Influence of rutile nano-TiO2 on ultraviolet resistance of paint[J]. Iron Steel Vanadium Titanium, 2015, 36(3): 26-29.
吴健春. 金红石纳米二氧化钛在涂料中的应用[J]. 钢铁钒钛, 2021, 42(1): 43-49.
WU J C. Application of rutile nano titanium dioxide in coatings[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 43-49.
毛晨峰, 王新灵. 羟基丙烯酸聚氨酯/金红石型纳米TiO2改性复合材料研究[J]. 化学建材, 2007(2): 30-32.
MAO C F, WANG X L. Study of aromatic nano-TiO2 modified acrylic-polyurethane composites[J]. Chemical Materials for Construction, 2007(2): 30-32.
郑顺姬, 陶亚群. 纳米二氧化钛/聚氨酯复合涂饰剂性能研究[J]. 皮革科学与工程, 2014, 24(2): 38-42.
ZHENG S J, TAO Y Q. Study on preparation and properties of nanometer titanium dioxide/polyurethane compound finishing agent[J]. Leather Science and Engineering, 2014, 24(2): 38-42.
赵欣, 隋智慧, 张景斌, 等. 二氧化钛纳米晶囊泡微乳液在聚氨酯涂饰体系中的应用[J]. 人工晶体学报, 2017, 46(6): 1148-1153.
ZHAO X, SUI Z H, ZHANG J B, et al. Application of TiO2 nanocrystalline vesicle microemulsion in the polyurethane coating system[J]. Journal of Synthetic Crystals, 2017, 46(6): 1148-1153.
朱艳云, 朱章鑫, 涂航, 等. TiO2/SiO2复合水性聚氨酯的制备及研究[J]. 丽水学院学报, 2017, 39(5): 48-53.
ZHU Y Y, ZHU Z X, TU H, et al. A study on TiO2/SiO2 composite waterborne polyurethane[J]. Journal of Lishui University, 2017, 39(5): 48-53.
周琳, 富艳春. 壳聚糖/植酸钠/纳米TiO2-ZnO在木材表面的自组装及抗紫外性能探究[J]. 家具, 2020, 41(4): 16-21.
ZHOU L, FU Y C. Self-assembly and UV resistance of chitosan/sodium phytate/nano-TiO2-ZnO binary composite film on wood surface[J]. Furniture, 2020, 41(4): 16-21.
CAO Y, XU P W, LV P, et al. Excellent UV resistance of polylactide by interfacial stereo complexation with double-shell-structured TiO2 nanohybrids[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 49090-49100.
潘卉, 曹刘琴, 赵甜, 等. 乙二醇表面改性纳米二氧化钛的制备及其对水性聚氨酯的改性[J]. 化学研究, 2014, 25(5): 509-515.
PAN H, CAO L Q, ZHAO T, et al. Preparation of nano titanium dioxide surface-modified with ethylene glycol and its use in modification of waterborne polyurethane[J]. Chemical Research, 2014, 25(5): 509-515.
潘卉, 肖莎莎, 赵甜, 等. TiO2/PVP纳米微粒改性聚氨酯皮革涂饰剂的研究[J]. 中国皮革, 2012, 41(17): 32-36.
PAN H, XIAO S S, ZHAO T, et al. Polyurethane leather finishing agent modified by TiO2/PVP nano-particles[J]. China Leather, 2012, 41(17): 32-36.
HUANG Z W, GURNEY R S, WANG Y L, et al. TDI/TiO2 hybrid networks for superhydrophobic coatings with superior UV durability and cation adsorption functionality[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7488-7497.
CUI C W, YANG C, BAO J, et al. Monodispersed ZnO nanoparticle-poly(methyl methacrylate) composites with visible transparency for ultraviolet shielding applications[J]. ACS Applied Nano Materials, 2020, 3(9): 9026-9034.
Calvo M E, Castro Smirnov J R, Míguez H. Novel approaches to flexible visible transparent hybrid films for ultraviolet protection[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(14): 945-956.
Factori I M, Amaral J M, Camani P H, et al. ZnO nanoparticle/poly(vinyl alcohol) nanocomposites via microwave-assisted sol-gel synthesis for structural materials, UV Shielding, and antimicrobial activity[J]. ACS Applied Nano Materials, 2021, 4(7): 7371-7383.
ZHANG S W, ZHANG D D, BAI H Y, et al. ZnO nanoparticles coated with amphiphilic polyurethane for transparent polyurethane nanocomposites with enhanced mechanical and UV-shielding performance[J]. ACS Applied Nano Materials, 2020, 3(1): 59-67.
饶飞. 重组竹紫外光降解与涂膜屏蔽机制的研究[D]. 北京: 中国林业科学研究院, 2020.
牟宗波, 王全杰. 提高MDI型聚氨酯抗紫外光老化性能的研究[J]. 中国皮革, 2012, 41(21): 28-33.
MOU Z B, WANG Q J. Enhancing UV-aging resistance properties of MDI-based polyurethane coating[J]. China Leather, 2012, 41(21): 28-33.
郑顺姬, 张立峰. 改性纳米氧化锌/丙烯酸树脂复合涂饰剂的制备及性能研究[J]. 中国皮革, 2016, 45(5): 10-12, 16.
ZHENG S J, ZHANG L F. Preparation and properties of modified nano ZnO/acrylic compound finishing agent[J]. China Leather, 2016, 45(5): 10-12, 16.
Kim D, Jeon K, Lee Y, et al. Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO[J]. Progress in Organic Coatings, 2012, 74(3): 435-442.
GUO H Z, Fuchs P, Cabane E, et al. UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures[J]. Holzforschung, 2016, 70(8): 699-708.
高天佐, 于晓丽, 张玉玺, 等. 不同形貌二氧化铈的制备及其紫外屏蔽性能研究[J]. 湿法冶金, 2018, 37(6): 497-500.
GAO T Z, YU X L, ZHANG Y X, et al. Preparation and UV-shielding properties of ceria with different morphologies[J]. Hydrometallurgy of China, 2018, 37(6): 497-500.
闫玉玲, 李丽华, 张金生, 等. 铈基纳米复合氧化物的研究及其应用进展[J]. 应用化工, 2016, 45(11): 2125-2129.
YAN Y L, LI L H, ZHANG J S, et al. Preparation and application of cerium-based composite nano oxides[J]. Applied Chemical Industry, 2016, 45(11): 2125-2129.
GUO H Z, Klose D, HOU Y H, et al. Highly efficient UV protection of the biomaterial wood by A transparent TiO2/Ce xerogel[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 39040-39047.
Matter M T, Furer L A, Starsich F H L, et al. Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2830-2839.
HU J, DENG W J, CHEN D H. Ceria hollow spheres as an adsorbent for efficient removal of acid dye[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3570-3582.
MA Q, Izu N, Masuda Y. Ceria polymer hybrid nanoparticles and assembled films for coating applications[J]. ACS Applied Nano Materials, 2018, 1(5): 2112-2119.
Suhailath K, Ramesan M T. Effect of ceria nanoparticles on mechanical properties, thermal and dielectric properties of poly (butyl methacrylate) nanocomposites[J]. Polymer Composites, 2020, 41(6): 2344-2354.
Martín-Fabiani I, Koh M L, Dalmas F, et al. Design of waterborne nanoceria/polymer nanocomposite UV-absorbing coatings: Pickering versus blended particles[J]. ACS Applied Nano Materials, 2018, 1(8): 3956-3968.
XU S, LI S Y, ZHANG M, et al. Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene[J]. Carbohydrate Polymers, 2020, 234: 115891.
Kwon D, Kang J Y, An S N, et al. Tuning the base properties of Mg-Al hydrotalcite catalysts using their memory effect[J]. Journal of Energy Chemistry, 2020, 46: 229-236.
SHU Y Q, YIN P G, WANG J F, et al. Bioinspired nacre-like heparin/layered double hydroxide film with superior mechanical, fire-shielding, and UV-blocking properties[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 3820-3826.
SHI W Y, LIN Y J, ZHANG S T, et al. Study on UV-shielding mechanism of layered double hydroxide materials[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(41): 18217-18222.
WANG X L, ZHOU S X, WU L M. Fabrication of Fe3+ doped Mg/Al layered double hydroxides and their application in UV light-shielding coatings[J]. Journal of Materials Chemistry C, 2014, 2(29): 5752.
WANG G R, XU S M, XIA C H, et al. Fabrication of host–guest UV-blocking materials by intercalation of fluorescent anions into layered double hydroxides[J]. RSC Advances, 2015, 5(30): 23708-23714.
MA R Y, CHEN T W, FENG Y J, et al. Synergetic light stabilizing effects of reducing agent and UV absorber co-intercalated layered double hydroxides for polypropylene[J]. Applied Clay Science, 2020, 194: 105700.
吕帅. 镁铝类水滑石在木材及乙烯-醋酸乙烯共聚物中的阻燃/抑烟性能的研究[D]. 北京: 北京化工大学, 2020.
WANG Y, LI T, MA P M, et al. Simultaneous enhancements of UV-shielding properties and photostability of poly(vinyl alcohol) via incorporation of sepia eumelanin[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2252-2258.
Dezidério S N, Brunello C A, da Silva M I N, et al. Thin films of synthetic melanin[J]. Journal of Non-Crystalline Solids, 2004, 338/339/340: 634-638.
CAO W, ZHOU X H, McCallum N C, et al. Unraveling the structure and function of melanin through synthesis[J]. Journal of the American Chemical Society, 2021, 143(7): 2622-2637.
LIU Y L, AI K L, LU L H. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057-5115.
WANG Y, WANG X F, LI T, et al. Effects of melanin on optical behavior of polymer: from natural pigment to materials applications[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 13100-13106.
XIE W J, PAKDEL E, LIU D, et al. Waste-hair-derived natural melanin/TiO2 hybrids as highly efficient and stable UV-shielding fillers for polyurethane films[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1343-1352.
HUANG Y R, LI Y W, HU Z Y, et al. Mimicking melanosomes: polydopamine nanoparticles as artificial microparasols[J]. ACS Central Science, 2017, 3(6): 564-569.
WANG Y, SU J, LI T, et al. A novel UV-shielding and transparent polymer film: when bioinspired dopamine-melanin hollow nanoparticles join polymers [J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36281-36289.
相关文章
相关作者
相关机构
微信公众号