热处理西加云杉音板用材性能研究
Performance of Heat-Treated Sitka Spruce Wood for Soundboards
- 2022年36卷第4期 页码:57-62
DOI: 10.12326/j.2096-9694.2021182
扫 描 看 全 文
1.南京林业大学材料科学与工程学院,江苏南京 210037
扫 描 看 全 文
程亚飞,姜天乐,翟树杰等.热处理西加云杉音板用材性能研究[J].木材科学与技术,2022,36(04):57-62.
CHENG Ya-fei,JIANG Tian-le,ZHAI Shu-jie,et al.Performance of Heat-Treated Sitka Spruce Wood for Soundboards[J].Chinese Journal of Wood Science and Technology,2022,36(04):57-62.
为考察热处理对木材声学性能的调节作用,采用160 ℃常压过热蒸汽对西加云杉(,Picea sitchensis,)音板用材分别处理0.5、1.5、2.0 h,测试分析热处理材的声学性能、吸湿性和颜色,并采用动态热机械分析对木材黏弹性和改性机理进行探讨。结果表明:热处理提高了木材的声学性能,与未处理材相比,热处理材的比动态弹性模量提高了30.4%~36.4%,声辐射品质常数提高了19.1%~22.3%,声转换效率提高了44.8%~48.6%。热处理后木材的吸湿性明显下降,有助于提高和稳定木材的声学性能,而热处理材的外观则呈现近似天然老化木材的特征。
In order to investigate the effect of heat treatment on acoustic properties of wood, Sitka spruce boards were thermally treated with the atmospheric superheated steam at 160 ℃ for 0.5, 1.5 or 2.0 hours. The acoustic properties, hygroscopicity, and color of the heat-treated wood were assessed. Dynamic thermomechanical analysis was applied to investigate wood viscoelasticity and property modification mechanism. The results showed that heat treatment improved wood acoustic properties. After the treatments, the specific dynamic elastic modulus increased by 30.4%~36.4%, the quality constant increased by 19.1%~22.3%, and the sound conversion efficiency increased by 44.8%~48.6%. The hygroscopicity of the heat-treated wood was found much lower than the control, which helped both improve and stabilize the acoustic properties, and the after-treatment appearance was similar to the naturally aged wood.
西加云杉音板用材热处理声学性能材色吸湿性
Sitka sprucewood soundboardheat treatmentacoustic propertywood colormoisture sorption
吕少一, 刘美宏, 彭立民, 等. 木质材料在乐器与音箱领域的应用进展[J]. 木材工业, 2020, 34(1): 25-29.
LYU S Y, LIU M H, PENG L M, et al. Review of wood material’s application in musical instruments and acoustics products[J]. China Wood Industry, 2020, 34(1): 25-29.
Obataya E. Effects of natural and artificial ageing on the physical and acoustic properties of wood in musical instruments[J]. Journal of Cultural Heritage, 2017, 27: S63-S69.
刘美宏, 彭立民, 吕少一, 等. 乐器用木材声学振动性能改良研究的进展[J]. 木材工业, 2020, 34(2): 29-33.
LIU M H, PENG L M, LYU S Y, et al. Research progress of wood treatment to improve acoustic vibration performance for making musical instruments[J]. China Wood Industry, 2020, 34(2): 29-33.
Matsuo M, Yokoyama M, Umemura K, et al. Aging of wood: analysis of color changes during natural aging and heat treatment[J]. Holzforschung, 2011, 65(3): 361-368.
Ganne-Chédeville C, Jääskeläinen A S, Froidevaux J, et al. Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy[J]. Holzforschung, 2012, 66(2): 163-170.
Zeniya N, Obataya E, Endo-Ujiie K, et al. Changes in vibrational properties and colour of spruce wood by hygrothermally accelerated ageing at 95-140 ℃ and different relative humidity levels[J]. SN Applied Sciences, 2018, 1(1): 1-11.
贾东宇. 高温热处理对杉木声学性能的影响[D]. 北京: 北京林业大学, 2010.
GUO F, HUANG R F, LU J X, et al. Evaluating the effect of heat treating temperature and duration on selected wood properties using comprehensive cluster analysis[J]. Journal of Wood Science, 2014, 60(4): 255-262.
Zauer M, Kowalewski A, Sproßmann R, et al. Thermal modification of European beech at relatively mild temperatures for the use in electric bass guitars[J]. European Journal of Wood and Wood Products, 2016, 74(1): 43-48.
Krüger R, Zauer M, Wagenführ A. Physical properties of native and thermally treated European woods as potential alternative to Indian rosewood for the use in classical guitars[J]. European Journal of Wood and Wood Products, 2018, 76(6): 1663-1668.
BUCUR V. Handbook of Materials for String Musical Instruments[M]. Cham, Switzerland: Springer International Publishing AG, 2016: 119, 797-810.
Havimo M. A literature-based study on the loss tangent of wood in connection with mechanical pulping[J]. Wood Science and Technology, 2009, 43(7/8): 627-642.
Miyoshi Y, Sakae A, Arimura N, et al. Temperature dependences of the dynamic viscoelastic properties of wood and acetylated wood swollen by water or organic liquids[J]. Journal of Wood Science, 2018, 64(2): 157-163.
Hughes M, Hill C, Pfriem A. The toughness of hygrothermally modified wood[J]. Holzforschung, 2015, 69(7): 851-862.
顾炼百, 丁涛, 江宁. 木材热处理研究及产业化进展[J]. 林业工程学报, 2019, 4(4): 1-11.
GU L B, DING T, JIANG N. Development of wood heat treatment research and industrialization[J]. Journal of Forestry Engineering, 2019, 4(4): 1-11.
Wikberg H, Liisa Maunu S. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR[J]. Carbohydrate Polymers, 2004, 58(4): 461-466.
Tjeerdsma B F, Boonstra M, Pizzi A, et al. Characterisation of thermally modified wood: molecular reasons for wood performance improvement[J]. Holz Als Roh- Und Werkstoff, 1998, 56(3): 149-153.
YAN L, CHEN Z J. Dynamic viscoelastic properties of heat-treated glycerol-impregnated poplar wood[J]. European Journal of Wood and Wood Products, 2018, 76(2): 611-616.
SUN N J, Das S, Frazier C E. Dynamic mechanical analysis of dry wood: linear viscoelastic response region and effects of minor moisture changes[J]. Holzforschung, 2007, 61(1): 28-33.
李坚. 木材科学[M]. 3版. 北京: 科学出版社, 2014: 212.
Bucur V. Acoustics of Wood[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.
González-Peña M M, Hale M D C. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 2: property predictions from colour changes[J]. Holzforschung, 2009, 63(4): 394-401.
相关作者
相关机构
微信公众号