中草药释香型刨花板特征挥发性有机化合物的指纹图谱分析
Fingerprint Analysis of Characteristic Volatile Organic Compounds in Fragrance-Scented Particleboards with Added Chinese Herbal Medicine
- 2022年36卷第4期 页码:38-44
DOI: 10.12326/j.2096-9694.2021163
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
2.广东艾高智能家居有限公司,广东佛山 528051
3.中国中医科学院中药研究所,北京 100700
4.云南新泽兴人造板有限公司,云南昆明 650499
扫 描 看 全 文
李善明,樊正强,黄成福等.中草药释香型刨花板特征挥发性有机化合物的指纹图谱分析[J].木材科学与技术,2022,36(04):38-44.
LI Shan-ming,FAN Zheng-qiang,HUANG Cheng-fu,et al.Fingerprint Analysis of Characteristic Volatile Organic Compounds in Fragrance-Scented Particleboards with Added Chinese Herbal Medicine[J].Chinese Journal of Wood Science and Technology,2022,36(04):38-44.
应用气相色谱-离子迁移谱(GC-IMS)采集添加中草药的释香型刨花板(简称释香板)的挥发性香气指纹信息,并进行主成分分析和“最近邻”分析,评价释香板的香气指纹信息,确定其与普通刨花板的差异和辨别方法。结果表明:GC-IMS共鉴定出释香板37种挥发性有机化合物(VOCs),主要VOCs为醛类、烯类、酮类和酯类化合物。释香板的特征VOCs为芳樟醇、石竹烯氧化物和樟脑。通过指纹图谱、主成分分析和“最近邻”指纹分析,可区分释香板和普通板的VOCs差异,GC-IMS可为快速判别释香板提供理论依据和数据支持。
In this study, the gas chromatography-ion mobility spectrometry (GC-IMS) was employed to collect the fingerprint information of volatile organic compounds (VOCs) of fragrance-scented particleboards added with the Chinese herbal medicine. The detailed information, i.e., the fragrance fingerprint, the difference and degree of differentiation of the fragrance-scented particleboards, and the control group were evaluated by the principal component analysis and the nearest-neighbor analysis. There are 37 kinds of VOCs identified by GC-IMS in fragrance-scented particleboards, among which aldehydes, alkenes, ketones, and esters are the main VOCs. Linalool, caryophyllene oxide, and camphor are the characteristic VOCs in the fragrance-scented particleboards. The fingerprint information, the principal component analysis, and the nearest-neighbor analysis diagrams can distinguish the difference of VOCs between the control group and fragrance-scented particleboards. The results show that GC-IMS provides theoretical basis and data supporting the rapid identification of scented particleboards with the Chinese herbal medicine.
气相色谱-离子迁移谱中草药释香型刨花板挥发性有机化合物指纹图谱
gas chromatography-ion mobility spectrometry (GC-IMS)fragrance-scented particleboards with added Chinese herbal medicinevolatile organic compounds (VOCs)fingerprint
沈嗣卿. 新装修民用建筑室内总挥发性有机物浓度变化规律研究[J]. 绿色建筑, 2017, 9(4): 14-16.
SHEN S Q. Study on change of volatile organic compounds concentration in new civil building[J]. Green Building, 2017, 9(4): 14-16.
李锐, 岳茂增, 宋玉峰, 等. 浅析人造板与木质家具中甲醛、TVOC释放量以及污染的降低、防范对策[J]. 绿色环保建材, 2019(2): 14-15.
沈隽, 蒋利群. 人造板VOCs释放研究进展[J]. 林业工程学报, 2018, 3(6): 1-10.
SHEN J, JIANG L Q. A review of research on VOCs release from wood-based panels[J]. Journal of Forestry Engineering, 2018, 3(6): 1-10.
李善明,樊正强,黄成福, 等. 中草药释香型刨花板的制备及其性能[J].林业工程学报, 2022, 7(3): 73-79.
LI S M, FAN Z Q, HUANG C F, et al. Preparation and properties of fragrant particleboards with added Chinese herbal medicine[J]. Journal of Forestry Engineering, 2022, 7(3): 73-79.
YIN J X, WU M F, LIN R M, et al. Application and development trends of gas chromatography-ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis[J]. Microchemical Journal, 2021, 168: 106527.
WANG S Q, CHEN H T, SUN B G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry, 2020, 315: 126158.
陈彦憬, 于建娜, 敬国兴, 等. 气相色谱-离子迁移谱技术在农业领域的应用[J]. 分析试验室, 2020, 39(12): 1480-1488.
CHEN Y J, YU J N, JING G X, et al. Application of gas chromatography-ion mobility spectrometry in agriculture[J]. Chinese Journal of Analysis Laboratory, 2020, 39(12): 1480-1488.
张茜, 刘炜伦, 路亚楠, 等. 顶空气相色谱-质谱联用技术的应用进展[J]. 色谱, 2018, 36(10): 962-971.
ZHANG X, LIU W L, LU Y N, et al. Recent advances in the application of headspace gas chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2018, 36(10): 962-971.
Rodríguez-Maecker R, Vyhmeister E, Meisen S, et al. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry[J]. Analytical and Bioanalytical Chemistry, 2017, 409(28): 6595-6603.
赵蔷. 主成分分析方法综述[J]. 软件工程, 2016, 19(6): 1-3.
ZHAO Q. A review of principal component analysis[J]. Software Engineering, 2016, 19(6): 1-3.
相关文章
相关作者
相关机构
微信公众号