家具板件圆形孔位的机器视觉在线检测算法
Algorithm of Machine Vision System for Detecting Holes in Furniture Panel
- 2022年36卷第2期 页码:60-64
DOI: 10.12326/j.2096-9694.2021099
扫 描 看 全 文
1.广东理工学院机器视觉与智能检测工程技术研究中心,广东肇庆 526100
2.四川大学机械工程学院,四川成都 610065
扫 描 看 全 文
邓斌攸,池志强,潘云峰等.家具板件圆形孔位的机器视觉在线检测算法[J].木材科学与技术,2022,36(02):60-64.
DENG Bin-you,CHI Zhi-qiang,PAN Yun-feng,et al.Algorithm of Machine Vision System for Detecting Holes in Furniture Panel[J].Chinese Journal of Wood Science and Technology,2022,36(02):60-64.
为了高精度测量家具板件孔位,提出一种家具板件圆孔位置的机器视觉在线检测方法,为圆形孔位在线测量技术的进步提供支撑。图像经过像素值和距离相关滤波函数去噪处理、自适应二值化处理后,通过本文提出的二次孔定位算法进行处理,通过微调孔位逼近真实圆孔,解决常见畸变孔的位置提取。采用本文算法的试验结果表明,1 022块家具板件上4 056个圆孔位置检测5次的平均值为100.05 mm,重复标准差为0.041 mm;在±0.5 mm的误差范围内,孔心,X,坐标、,Y,坐标的人机测量相符度分别为99.8%、92.9%。
In order to measure the hole position in the furniture panel with the high precision, a machine vision onset detection method was proposed in the paper. After the image denoising which is done by the pixel value filter and distance correlation filter it was adaptive binarized. Then the image is processed by the secondary hole localization algorithm. By fine-tuning the hole position close to the real round hole, it solve the position extraction of common distorted holes and provide support for the progress of circular hole position onset measurement technology. The experiment results showed that using the algorithm in this paper, the average value of 4 056 circular holes in 1 022 furniture panels is 100.05 mm and the standard deviation is 0.041 mm with 5 repetitions. Within the error range of ±0.5 mm, the coincidence degree of the ergonomic measurement of the ,X,-coordinate of the hole center is 99.8%, and the coincidence degree of the ,Y,-coordinate is 92.9%.
家具板件孔位在线检测机器视觉
furniture panelhole positiononline measurementmachine vision
李亚茹. 基于机器视觉的大尺寸板材测量方法研究[D]. 天津: 天津工业大学, 2019.
Kline D E, Surak C, Araman P A. Automated hardwood lumber grading utilizing a multiple sensor machine vision technology[J]. Computers and Electronics in Agriculture, 2003, 41(1/2/3): 139-155.
李江昀, 王宇浩, 童朝南. 一种Zernike矩的高精度板材尺寸测量方法[J]. 电子学报, 2015, 43(7): 1432-1436.
LI J Y, WANG Y H, TONG C N. An accurate zernike moment-oriented method for measuring flat strip dimension[J]. Acta Electronica Sinica, 2015, 43(7): 1432-1436.
潘屾, 王克奇, 侯弘毅, 等. 应用Harris角点检测进行图像拼接的超长板材尺寸测量方法[J]. 东北林业大学学报, 2018, 46(4): 54-57.
PAN S, WANG K Q, HOU H Y, et al. Harris corner detection for image splicing of long plate size measurement method[J]. Journal of Northeast Forestry University, 2018, 46(4): 54-57.
欧阳平. 基于计算机视觉的圆孔零件检测系统的设计[D]. 成都: 电子科技大学, 2013.
王福荣. 多圆孔零件位置尺寸的视觉测量系统研究[D]. 郑州: 郑州大学, 2019.
金华强, 廖强. 一种基于机器视觉的圆孔边缘跟踪方法[J]. 电子设计工程, 2019, 27(21): 172-176.
JIN H Q, LIAO Q. An edge tracing algorithm of circular parts based on machine vision[J]. Electronic Design Engineering, 2019, 27(21): 172-176.
肖书浩, 何为, 吴蕾. 一种基于机器视觉的通用平面尺寸检测软件系统[J]. 制造业自动化, 2018, 40(3): 85-88, 109.
XIAO S H, HE W, WU L. A Software system to inspect general plane dimensions based on machine vision[J]. Manufacturing Automation, 2018, 40(3): 85-88, 109.
Ergün B. An expert measurement system for photogrammetric industrial application[J]. Measurement, 2006, 39(5): 415-419.
莫爵贤, 王宇, 吴智恒, 等. 一种基于机器视觉的机加工件尺寸测量系统设计[J]. 机电技术, 2018, 41(3): 25-27.
冯西, 吴静静, 安伟. 基于机器视觉的大尺寸工件自动测量系统[J]. 传感器与微系统, 2019, 38(4): 104-107.
FENG X, WU J J, AN W. Research on automatic measurement system of large size workpiece based on machine vision[J]. Transducer and Microsystem Technologies, 2019, 38(4): 104-107.
封维忠, 王建文, 滕辉, 等. 板材尺寸自动检测仪的研究[J]. 林业科学, 2008, 44(2): 165-168.
FENG W Z, WANG J W, TENG H, et al. An instrument for auto-measuring the width and length of wood board[J]. Scientia Silvae Sinicae, 2008, 44(2): 165-168.
王凯, 周律, 章佳佳. 基于机器视觉的圆孔零件内外径尺寸精密检测[J]. 农业装备与车辆工程, 2018, 56(9): 59-62.
WANG K, ZHOU L, ZHANG J J. Inner and outer diameters precision detection of pore parts based on machine vision[J]. Agricultural Equipment & Vehicle Engineering, 2018, 56(9): 59-62.
许光明, 吴昭, 周春兰, 等. 基于视觉的零件尺寸测量[J]. 工业控制计算机, 2015, 28(4): 111-113.
XU G M, WU Z, ZHOU C L, et al. Size measurement of parts based on vision technology[J]. Industrial Control Computer, 2015, 28(4): 111-113.
谢家欣. 基于机器视觉工件尺寸测量方法研究[D]. 长春: 长春工业大学, 2018.
相关作者
相关机构
微信公众号