负泊松比结构在家具中的研究现状与应用前景
Research and Application Status of Negative Poisson Ratio Structure in Furniture
- 2022年36卷第3期 页码:15-19
DOI: 10.12326/j.2096-9694.2021095
扫 描 看 全 文
1.南京林业大学家居与工业设计学院,江苏南京 210037
扫 描 看 全 文
吕芳莉,苗艳凤.负泊松比结构在家具中的研究现状与应用前景[J].木材科学与技术,2022,36(03):15-19.
LYU Fang-li,MIAO Yan-feng.Research and Application Status of Negative Poisson Ratio Structure in Furniture[J].Chinese Journal of Wood Science and Technology,2022,36(03):15-19.
通过查阅国内外负泊松比材料与结构相关文献,总结负泊松比结构的主要形式和应用方向,从增强家具部件力学性能、连接件力学性能及整体力学性能三个方面分析负泊松比结构在家具中的应用。结合家具产品需求和设计趋势,可以通过3D打印技术、有限元分析等方法,研究与开发负泊松比家具材料与结构。
The literatures on negative Poisson’s ratio (NPR) materials and structures were reviewed. The forms and current application trends of NPR metamaterials were summarized. The effects of NPR structure in enhancing the overall mechanical properties of furniture and mechanical properties of parts and joints were analyzed. Considering the trend and demand of furniture design, NPR materials and structures can be further developed by 3D printing technology and finite element method.
负泊松比结构家具力学性能增强
negative Poisson’s ratio structurefurnituremechanical property enhancement
吴智慧. 工业4.0时代中国家居产业的新思维与新模式[J]. 木材工业, 2017, 31(2): 5-9.
WU Z H. New thinking and new models of the Chinese home furnishings industry in the industry 4.0 era[J]. China Wood Industry, 2017, 31(2): 5-9.
王强, 王宁, 王铃伟, 等. 轻质蜂窝形仿生材料在家具设计中的应用与发展研究[J]. 家具与室内装饰, 2020(10): 82-84.
WANG Q, WANG N, WANG L W, et al. Study on application and development of lightweight honeycomb bionic materials in furniture design[J]. Furniture & Interior Design, 2020(10): 82-84.
刘祎, 吴智慧, 徐伟. 生命周期评价在家具行业的应用[J]. 世界林业研究, 2019, 32(2): 56-60.
LIU Y, WU Z H, XU W. Review of the application of life cycle assessment to furniture industry[J]. World Forestry Research, 2019, 32(2): 56-60.
任杰, 朱剑刚.家具企业木材边角料循环利用模式探讨[J]. 木材科学与技术, 2021, 35(4): 69-73. DOI: 10.12326/j.2096-9694.2020096http://dx.doi.org/10.12326/j.2096-9694.2020096.
REN J, ZHU J G. Discussion on wood waste recycle and reuse model in furniture manufacturing[J]. Chinese Journal of Wood Science and Technology, 2021, 35(4): 69-73. DOI: 10.12326/j.2096-9694.2020096http://dx.doi.org/10.12326/j.2096-9694.2020096.
Evans K E. Auxetic polymers: A new range of materials[J]. Endeavour, 1991, 15(4): 170-174.
Cho H, Seo D, Kim D N. Mechanics of auxetic materials[M]//Handbook of Mechanics of Materials. Singapore: Springer Singapore, 2018: 1-25.
颜芳芳, 徐晓东. 负泊松比柔性蜂窝结构在变体机翼中的应用[J]. 中国机械工程, 2012, 23(5): 542-546.
YAN F F, XU X D. Negative Poisson’s ratio honeycomb structure and its applications in structure design of morphing aircraft [J]. China Mechanical Engineering, 2012, 23(5): 542-546.
马丕波, 常玉萍, 蒋高明. 负泊松比针织结构及其应用[J]. 纺织导报, 2015(7): 47-50.
MA P B, CHANG Y P, JIANG G M. Knitted structures with negative Poisson’s ratio[J]. China Textile Leader, 2015(7): 47-50.
Ali M N, Rehman I U. An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis[J]. Journal of Materials Science Materials in Medicine, 2011, 22(11): 2573-2581.
杨呜波, 阳霞, 李忠明, 等. 负泊松比材料的结构与性能[J]. 高分子材料科学与工程, 2001, 17(6): 15-18, 24.
YANG W B, YANG X, LI Z M, et al. The structure and properties of the material with negative Poisson’s ratio[J]. Polymer Materials Science & Engineering, 2001, 17(6): 15-18, 24.
吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611-638.
WU W W, XIAO D B, MENG J X, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638.
Keskar N R, Chelikowsky J R. Negative Poisson ratios in crystalline SiO2 from first-principles calculations[J]. Nature, 1992, 358(6383): 222-224.
于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14.
YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson’s ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1-14.
高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.
GAO Y K. Auxetic metamaterials and structures[J]. Journal of Materials Engineering, 2021, 49(5): 38-47.
Kelkar P U, Kim H S, Cho K H, et al. Cellular Auxetic structures for mechanical metamaterials: a review[J]. Sensors, 2020, 20(11): 3132.
任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.
REN X, ZHANG X Y, XIE Y M. Research progress in Auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687.
王梁, 刘海涛. X型内凹蜂窝结构的拉伸力学行为研究[J]. 机械强度, 2020, 42(4): 896-900.
WANG L, LIU H T. Study on tensile mechanical behavior of X-type re-entrant honeycomb structure[J]. Journal of Mechanical Strength, 2020, 42(4): 896-900.
Alderson A, Alderson K L, Attard D, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70(7): 1042-1048.
Ren X, Das R, Tran P, et al. Auxetic metamaterials and structures: a review[J]. Smart Materials and Structures, 2018, 27(2): 023001.
Grima J N, Gatt R. Perforated sheets exhibiting negative Poisson’s ratios[J]. Advanced Engineering Materials, 2010, 12(6): 460-464.
Schenk M, Guest S D. Geometry of Miura-folded metamaterials[J]. PNAS, 2013, 110(9): 3276-3281.
于相龙, 周济. 力学超材料的构筑及其超常新功能[J]. 中国材料进展, 2019, 38(1): 14-21, 41.
YU X L, ZHOU J. Mechanical metamaterials: Architected materials and unexplored properties[J]. Materials China, 2019, 38(1): 14-21, 41.
Ha C S, Plesha M E, Lakes R S. Chiral three-dimensional lattices with tunable Poisson’s ratio[J]. Smart Materials and Structures, 2016, 25(5): 054005.
Prawoto Y. Seeing Auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio[J]. Computational Materials Science, 2012, 58: 140-153.
赵昌方, 朱宏伟, 仲健林, 等. 复合材料负泊松比结构力学性能数值研究:拉压力学性能[J]. 江苏师范大学学报(自然科学版), 2020, 38(4): 61-64.
ZHAO C F, ZHU H W, ZHONG J L, et al. Numerical study on the ngative Poisson’s ratio structure with composite materials: Tension and compression mechanics[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2020, 38(4): 61-64.
Majewski A, Krystofiak T, Smardzewski J. Mechanical properties of corner joints made of honeycomb panels with double arrow-shaped Auxetic cores[J]. Materials, 2020, 13(18): 4212.
SMARDZEWSKI J. Auxetic springs for seating [J]. Turkish Journal of Agriculture and Forestry, 2013, 37(3): 369-76.
Kasal A, Kuşkun T, Smardzewski J. Experimental and numerical study on withdrawal strength of different types of Auxetic dowels for furniture joints[J]. Materials, 2020, 13(19): 4252.
REN X, SHEN J H, Tran P, et al. Auxetic nail: Design and experimental study[J]. Composite Structures, 2018, 184: 288-298.
Donoghue J P, Alderson K L, Evans K E. The fracture toughness of composite laminates with a negative Poisson’s ratio[J]. Physica Status Solidi (b), 2009, 246(9): 2011-2017.
Smardzewski J. Elastic properties of cellular wood panels with hexagonal and Auxetic cores[J]. Holzforschung, 2013, 67(1): 87-92.
Smardzewski J. Experimental and numerical analysis of wooden sandwich panels with an Auxetic core and oval cells[J]. Materials & Design, 2019, 183: 108159.
REN X, SHEN J H, Ghaedizadeh A, et al. A simple Auxetic tubular structure with tuneable mechanical properties[J]. Smart Materials and Structures, 2016, 25(6): 065012.
Kuşkun T, Smardzewski J, Kasal A. Experimental and numerical analysis of mounting force of Auxetic dowels for furniture joints[J]. Engineering Structures, 2021, 226: 111351.
Ebe K, Griffin M J. Factors affecting static seat cushion comfort[J]. Ergonomics, 2001, 44(10): 901-921.
Smardzewski J, Prekrat S. Design of small Auxetic springs for office furniture[M], 2011.
Smardzewski J, Kłos R, Fabisiak B. Design of small Auxetic springs for furniture[J]. Materials & Design, 2013, 51: 723-728.
Smardzewski J, Jasińska D, Janus-Michalska M. Structure and properties of composite seat with Auxetic springs[J]. Composite Structures, 2014, 113: 354-361.
刘青青, 徐伟. 沙发结构对沙发舒适性的影响[J]. 家具, 2019, 40(5): 28-30, 44.
LIU Q Q, XU W. Study of the influence of sofa structure on sofa comfort[J]. Furniture, 2019, 40(5): 28-30, 44.
张慧敏, 李晓英. 面向久坐族的健康座椅交互设计研究[J]. 设计, 2018(16): 126-128.
ZHANG H M, LI X Y. Research on interaction design of healthy seats for sedentary people[J]. Design, 2018(16): 126-128.
马婧, 徐伟. 拆装式沙发设计要素分析[J]. 设计, 2019, 32(9): 146-147.
MA J, XU W. Analysis of design elements of disassembled sofa[J]. Design, 2019, 32(9): 146-147.
冯鑫浩, 吴智慧. 家居制品3D打印制造的现状及发展前景[J]. 林业工程学报, 2019, 4(6): 20-28.
FENG X H, WU Z H. Development and prospect of furnishings manufactured by 3D printing technology[J]. Journal of Forestry Engineering, 2019, 4(6): 20-28.
刘德喜, 李鹏, 陶毓博. 3D打印木塑填充结构的平压性能比较[J]. 木材工业, 2019, 33(5): 39-43.
LIU D X, LI P, TAO Y B. Flatwise compression properties of 3D-printed infill patterns of wood plastic composites[J]. China Wood Industry, 2019, 33(5): 39-43.
陶毓博, 李鹏, 刘德喜, 等.传统木雕花板的三维数字化重构与打印[J]. 木材工业, 2020, 34(2): 42-44.
TAO Y B, LI P, LIU D X, et al. Three-dimensional modeling and printing of chinese traditional wood carving boards[J]. China Wood Industry, 2020, 34(2): 42-44.
胡文刚, 关惠元. 板式家具结构设计有限元法研究综述[J]. 世界林业研究, 2020, 33(2): 68-71.
HU W G, GUAN H Y. Review of study on application of finite element method in panel furniture structure design[J]. World Forestry Research, 2020, 33(2): 68-71.
相关作者
相关机构
微信公众号