自然老化对重组竹理化和燃烧性能的影响
Effects of Natural Aging on Physicochemical and Combustion Properties of Bamboo Scrimber
- 2022年36卷第1期 页码:80-86
DOI: 10.12326/j.2096-9694.2021067
扫 描 看 全 文
1.国际竹藤中心,北京 100102
扫 描 看 全 文
李德月,高奇,费本华等.自然老化对重组竹理化和燃烧性能的影响[J].木材科学与技术,2022,36(01):80-86.
LI De-yue,GAO Qi,FEI Ben-hua,et al.Effects of Natural Aging on Physicochemical and Combustion Properties of Bamboo Scrimber[J].Chinese Journal of Wood Science and Technology,2022,36(01):80-86.
为了分析自然老化对户外重组竹性能的影响,本研究选取在青岛户外放置两年的重组竹为研究对象,测试其理化性能和燃烧性能。结果显示,与对照样相比,老化后重组竹的吸水厚度膨胀率和吸水率分别提高了88.32%和35.62%,弹性模量和静曲强度的残余率分别为79.91%、75.72%。自然老化后重组竹的尺寸稳定性和力学强度仍能满足GB/T 40241—2021《户外重组竹》的要求。老化后重组竹灰分含量提高了1.64倍,挥发分含量减少3.13%,固定碳含量提高2.29%;竹束内的半纤维素和纤维素降解;与对照样相比,老化重组竹的点燃时间延迟22 s;热释放速率峰值降低8.41%,总释烟量降低18.53%,总释热量变化不显著。
In order to investigate the effect of natural aging, the bamboo scrimber, which was placed outdoors in Qingdao for two years was selected to test for the physicochemical and combustion properties. The results showed that the thickness swelling and water absorption of aged bamboo scrimber increased by 88.32% and 35.62%, respectively. The residual rate of modulus of elasticity and modulus of rupture were 79.91% and 75.72%, respectively. The dimensional stability and mechanical strength of aged bamboo scrimber can still met the requirements of GB/T 40241—2021 ",Outdoor Bamboo Scrimber,". The ash and fixed carbon content of aged bamboo scrimber were increased by 1.64 times and 2.29% than that of controlled samples, while the volatile content was decreased by 3.13%. In addition, the hemicellulose and cellulose in the aged bamboo scrimber were seriously degraded. The combustion test results showed that the ignition time of aged bamboo scrimber was extended by 22 seconds; the peak heat-release rate and the total smoke-release content decreased 8.41% and 18.53% respectively, while the total energy of heat-release changed slightly.
重组竹自然老化接触角力学强度燃烧性能
bamboo scrimbernatural agingcontact anglemechanical strengthcombustion performance
秦莉, 于文吉. 重组竹研究现状与展望[J]. 世界林业研究, 2009, 22(6): 55-59.
QIN L, YU W J. Status and prospects of reconstituted bamboo lumber[J]. World Forestry Research, 2009, 22(6): 55-59.
李琴, 汪奎宏. 重组竹产业化发展可行性分析[J]. 木材工业, 2007, 21(1): 33-35.
LI Q, WANG K H. Analysis on feasibility of industrialization for reconstituted bamboo timber[J]. China Wood Industry, 2007, 21(1): 33-35.
魏洋, 张齐生, 蒋身学, 等. 现代竹质工程材料的基本性能及其在建筑结构中的应用前景[J]. 建筑技术, 2011, 42(5): 390-393.
WEI Y, ZHANG Q S, JIANG S X, et al. Basic properties and prospects of modern bamboo engineering materials applied in building structures[J]. Architecture Technology, 2011, 42(5): 390-393.
周吓星, 陈礼辉. 抗老化剂改善竹粉/聚丙烯发泡复合材料的自然老化性能[J]. 农业工程学报, 2015, 31(12): 301-307.
ZHOU X X, CHEN L H. Anti-aging agents improving natural weathering properties of bamboo powder/polypropylene foamed composites[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 301-307.
张亚慧, 由佳, 杨婵, 等. 户外用重组木加速老化耐久性能的评价[J]. 木材工业, 2018, 32(1): 33-35.
ZHANG Y H, YOU J, YANG C, et al. Durability of wood scrimber for outdoor use by accelerated aging tests[J]. China Wood Industry, 2018, 32(1): 33-35.
于子绚, 江泽慧, 王戈, 等. 湿热耦合环境下竹束单板层积材的力学性能[J]. 中南林业科技大学学报, 2012, 32(8): 127-130.
YU Z X, JIANG Z H, WANG G, et al. Mechanical properties of laminated bamboo scrimber in hygrothermal environment[J]. Journal of Central South University of Forestry & Technology, 2012, 32(8): 127-130.
胡玉安, 何梅, 黄慧, 等. 竹基纤维复合材料染色材耐候性能研究[J]. 南方林业科学, 2015, 43(4): 54-57.
HU Y A, HE M, HUANG H, et al. Studies on aging performance of bamboo-based fiber composites from Phyflostachys pubescens[J]. South China Forestry Science, 2015, 43(4): 54-57.
张亚慧, 祝荣先, 于文吉, 等. 户外用竹基纤维复合材料加速老化耐久性评价[J]. 木材工业, 2012, 26(5): 6-8.
ZHANG Y H, ZHU R X, YU W J, et al. Performance of exterior crushed bamboo-mat composite after accelerated aging test[J]. China Wood Industry, 2012, 26(5): 6-8.
靳肖贝, 张禄晟, 李瑜瑶, 等. 3种阻燃剂对重组竹燃烧性能和物理力学性能的影响[J]. 西北林学院学报, 2015, 30(5): 214-218.
JIN X B, ZHANG L S, LI Y Y, et al. Effects of three flame retardants on combustion, physical and mechanical properties of bamboo scrimber[J]. Journal of Northwest Forestry University, 2015, 30(5): 214-218.
邸明伟, 尤来, 赵婷玉, 等. 聚乙烯木塑复合材料的异氰酸酯表面处理与胶接[J]. 建筑材料学报, 2016, 19(1): 94-99.
DI M W, YOU L, ZHAO T Y, et al. Surface coating treatment with isocyanate and bonding for wood/polyethylene composites[J]. Journal of Building Materials, 2016, 19(1): 94-99.
高巧春, 赵剑英, 蔡红珍. 相容剂对木塑复合材料润湿性及力学性能的影响[J]. 塑料科技, 2011, 39(9): 95-98.
GAO Q C, ZHAO J Y, CAI H Z. Effect of compatibilizer on wettability and mechanical properties of wood-plastic composites[J]. Plastics Science and Technology, 2011, 39(9): 95-98.
秦莉. 热处理对重组竹材物理力学及耐久性能影响的研究[D]. 北京:中国林业科学研究院, 2010.
王志勇, 肖生苓, 杨丽丽. 木质剩余物轨枕复合材料老化性能[J]. 东北林业大学学报, 2009, 8, 44-45.
WANG Z Y, XIAO S L, YANG L L. Aging properties of wood residues from sleeper composites[J]. Journal of Northeast Forestry University, 2009, 8, 44-45.
Kránitz K, Sonderegger W, Bues C T, et al. Effects of aging on wood: a literature review[J]. Wood Science and Technology, 2016, 50(1), 7-22.
Pandey K K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[J]. Journal of Applied Polymer Science, 1999, 71(12): 1969-1975.
Özgenç Ö, Durmaz S, Boyaci I H, et al. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 171: 395-400.
LI N, RAO F, HE L L, et al. Evaluation of biochar properties exposing to solar radiation: a promotion on surface activities[J]. Chemical Engineering Journal, 2020, DOI:10.1016/j.cej.2019.123353http://dx.doi.org/10.1016/j.cej.2019.123353.
池玉杰. 6种白腐菌腐朽后的山杨木材和木质素官能团变化的红外光谱分析[J]. 林业科学, 2005, 41(2): 136-140.
CHI Y J. FTIR Analysis on function groups of david poplar wood and lignin degraded by 6 species of wood white-rot fungi[J]. Scientia Silvae Sinicae, 2005, 41(2): 136-140.
张丽娟. 常用装饰装修板材的燃烧性能的实验研究[D]. 太原: 太原理工大学, 2011.
李德, 黄冬梅, 何理辉, 等. 贴面工艺对合成板材燃烧性能的影响[J]. 中国安全生产科学技术, 2019, 15(12): 23-28.
LI D, HUANG D M, HE L H, et al. Influence of veneering technology on combustion performance of synthetic board[J]. Journal of Safety Science and Technology, 2019, 15(12): 23-28.
XIANG H, YANG J, FENG Z, et al. Investigation of the cofiring process of raw or torrefied bamboo and masson pine by using a cone calorimeter[J]. ACS Omega, 2019, 4(21), 19246-19254.
Gałaj J, Karpovič Z, Jaskółowski W. Investigation into the influence of impregnation on pine timber combustion using a cone calorimeter and large scale tests[J]. Engineering Structures and Technologies, 2011, 3(3): 91-104.
李江晓, 武轲, 陈广辉, 等. 单板与铝箔复合多层板的燃烧性能研究[J]. 木材工业, 2019, 33(1): 12-16.
LI J X, WU K, CHEN G H, et al. Combustion performance of laminated composite panels made from poplar veneers and aluminum foils[J]. China Wood Industry, 2019, 33(1): 12-16.
杨庆云, 颜东升. 金属面EPS夹芯板燃烧性能及防火对策研究[J]. 科技信息, 2010, 2(23): 453-455.
YANG Q Y, YAN D S. Study on the combustion performance and fire prevention countermeasures of EPS sandwich board[J]. Science & Technology Information, 2010, 2(23): 453-455.
LIU Z J, FEI B H, JIANG Z H, et al. Combustion characteristics of bamboo-biochars[J]. Bioresource Technology, 2014,167, 94-99.
ZHANG R, LEI K, YE B Q, et al. Effects of alkali and alkaline earth metal species on the combustion characteristics of single particles from pine sawdust and bituminous coal[J]. Bioresource Technology, 2018, 268: 278-285.
相关作者
相关机构
微信公众号