基于数字图像的木材缺陷识别研究进展
Research Review of Wood Defect Recognition Based on Digital Images
- 2022年36卷第1期 页码:9-16
DOI: 10.12326/j.2096-9694.2021049
扫 描 看 全 文
1.内蒙古农业大学材料科学与艺术设计学院,内蒙古呼和浩特 010018
2.山西应用科技学院信息工程系,山西太原 030000
扫 描 看 全 文
丁安宁,贺春光,多化琼等.基于数字图像的木材缺陷识别研究进展[J].木材科学与技术,2022,36(01):9-16.
DING An-ning,HE Chun-guang,DUO Hua-qiong,et al.Research Review of Wood Defect Recognition Based on Digital Images[J].Chinese Journal of Wood Science and Technology,2022,36(01):9-16.
数字图像处理技术是在木材缺陷识别中应用最广泛的技术之一,具有准确、快速、无损和成本低等优点。本文阐述基于数字图像的木材缺陷识别技术的研究现状,分析图像预处理、分割、特征提取及融合、图像识别分类过程涉及的算法,并对每种方法的特点以及局限性进行总结,对未来研究的发展趋势进行展望。数字图像处理技术进一步走向自动化和智能化,还需要更深入的研究。
Digital image processing technology is one of the most widely used technologies in the identification of wood defects, which has the advantages of accuracy, rapidity, nondestructive, and low cost. With extensive literature research, this paper expounds the present status of studies on the wood defect recognition based on the digital image technology. The image preprocessing, segmentation, feature extraction and selection, and the algorithm involved in image recognition and classification process, were analyzed. The principles, characteristics, and existing limitations of each method were summarized. The trends of future research were discussed. Further study is needed on automation and artificial intelligent of digital image processing technology.
数字图像缺陷识别木材缺陷图像处理技术
digital imagedefect identificationwood defectsimage processing technology
陈银星. 多图像去噪方法及应用[D]. 江门: 五邑大学, 2019.
王旭, 李小舟, 雷庆锋, 等. 改进小波阈值法在木材图像缺陷处理中的应用[J]. 辽宁林业科技, 2017(5): 18-21, 33.
WANG X, LI X Z, LEI Q F, et al. Application of improved wavelet thresholding method in defect processing of timber image[J]. Liaoning Forestry Science and Technology, 2017(5): 18-21, 33.
王香菊. 基于中值滤波和小波变换的图像去噪方法研究[D]. 西安: 西安科技大学, 2008.
孙丽萍, 宋文龙, 张冬妍, 等. 基于数字图像处理技术实现木材横纹压缩过程中构造学形态特征的研究[J]. 森林工程, 2000, 16(2): 15-18.
SUN L P, SONG W L, ZHANG D Y, et al. Study on the tectonic shape characteristics in the compress process of realizing wood grain by using digital image control techniques[J]. Forest Engineering, 2000, 16(2): 15-18.
关新平, 赵立兴, 唐英干. 图像去噪混合滤波方法[J]. 中国图象图形学报, 2005, 10(3): 332-337.
GUAN X P, ZHAO L X, TANG Y G. Mixed filter for image denoising[J]. Journal of Image and Graphics, 2005, 10(3): 332-337.
孙海英. 图像高斯噪声及椒盐噪声去噪算法研究[D]. 上海: 复旦大学, 2012.
石坤泉, 魏文国. 采用双边滤波的冷轧铝板表面缺陷图像去噪方法的研究[J]. 表面技术, 2018, 47(9): 317-323.
SHI K Q, WEI W G. Image denoising method of surface defect on cold rolled aluminum sheet by bilateral filtering[J]. Surface Technology, 2018, 47(9): 317-323.
庄子龙, 刘英, 沈鹭翔, 等. 基于多层感知机的木材颜色分类[J]. 林业机械与木工设备, 2020, 48(6): 8-14.
ZHUANG Z L, LIU Y, SHEN L X, et al. Wood color classification based on multi-layer perception[J]. Forestry Machinery & Woodworking Equipment, 2020, 48(6): 8-14.
Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
易子麟, 尹东, 胡安洲, 等. 基于非局部均值滤波的SAR图像去噪[J]. 电子与信息学报, 2012, 34(4): 950-955.
YI Z L, YIN D, HU A Z, et al. SAR image despeckling based on non-local means filter[J]. Journal of Electronics & Information Technology, 2012, 34(4): 950-955.
吴振静. 基于小波和非局部均值的图像去噪算法研究[D]. 长春: 吉林大学, 2011.
牟洪波. 基于BP和RBF神经网络的木材缺陷检测研究[D]. 哈尔滨: 东北林业大学, 2010.
张浩然, 张岱, 武登科, 等. 基于马尔科夫随机场的木材缺陷图像分割算法[J]. 林业机械与木工设备, 2019, 47(11): 38-42.
ZHANG H R, ZHANG D, WU D K, et al. Wood defect image segmentation of based on Markov random fields[J]. Forestry Machinery & Woodworking Equipment, 2019, 47(11): 38-42.
林启招, 孙永科, 邱坚. 基于YCbCr颜色空间的木材纹理检测技术[J]. 信阳农林学院学报, 2020, 30(3): 100-103, 112.
LIN Q Z, SUN Y K, QIU J. Wood texture figure extraction algorithm based on YCbCr color space[J]. Journal of Xinyang Agriculture and Forestry University, 2020, 30(3): 100-103, 112.
王金聪, 宋文龙, 张彭涛. 应用改进分水岭算法对木材表面缺陷图像分割试验[J]. 东北林业大学学报, 2018, 46(10): 93-97.
WANG J C, SONG W L, ZHANG P T. Image segmentation of wood surface defects with improved watershed algorithm[J]. Journal of Northeast Forestry University, 2018, 46(10): 93-97.
Jeong I, Lee C. An optimization-based approach to gamma correction parameter estimation for low-light image enhancement[J]. Multimedia Tools and Applications, 2021, 80(12): 18027-18042.
白雪冰, 王林. 基于空频变换的木材缺陷图像分割[J]. 东北林业大学学报, 2010, 38(8): 71-74.
BAI X B, WANG L. Image segmentation of wood defects based on space-frequency transformation[J]. Journal of Northeast Forestry University, 2010, 38(8): 71-74.
Funck J W, Zhong Y, Butler D A, et al. Image segmentation algorithms applied to wood defect detection[J]. Computers and Electronics in Agriculture, 2003, 41(1/2/3): 157-179.
戴天虹, 吴以. 基于OTSU算法与数学形态学的木材缺陷图像分割[J]. 森林工程, 2014, 30(2): 52-55.
DAI T H, WU Y. Image segmentation of wood defect based OTSU algorithm and mathematical morphology[J]. Forest Engineering, 2014, 30(2): 52-55.
Rahayu S, Qhomariyah N, Purnama J J, et al. Swietenia mahagoni wood defects segmentation using YIQ color space and thresholding[J]. Journal of Physics: Conference Series, 2020, 1641(1): 012071.
CHANG Z Y, CAO J, ZHANG Y Z. A novel image segmentation approach for wood plate surface defect classification through convex optimization[J]. Journal of Forestry Research, 2018, 29(6): 1789-1795.
WANG X J, WU S H, LIU Y P. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation[C]//Proc SPIE 10615, Ninth International Conference on Graphic and Image Processing (ICGIP 2017), 2018, 10615: 529-537.
LUO W, SUN L P. An improved binarization algorithm of wood image defect segmentation based on non-uniform background[J]. Journal of Forestry Research, 2019, 30(4): 1527-1533.
Fahrurozi A, Madenda S, Ernastuti, et al. Wood texture features extraction by using GLCM combined with various edge detection methods[J]. Journal of Physics: Conference Series, 2016, 725: 012005.
Wananda P D, Novamizanti L, Atmaja R D. Sistem deteksi cacat kayu dengan metode deteksi tepi SUSAN Dan ekstraksi ciri statistik[J]. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 2018, 6(1): 140.
许景涛. 木材表面缺陷的图像分割方法研究[D]. 哈尔滨: 东北林业大学, 2017.
郭景秋. 木材表面缺陷的图像分割算法研究[D]. 哈尔滨: 东北林业大学, 2015.
Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
Jung M, Bresson X, Chan T F, et al. Nonlocal Mumford-Shah regularizers for color image restoration[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2011, 20(6): 1583-1598.
李永军. 基于C-V模型水平集方法的彩色图像分割研究[D]. 苏州: 苏州大学, 2009.
程玉柱, 蔡云飞. 基于分数阶CV模型的木材缺陷图像分割算法[J]. 林业机械与木工设备, 2018, 46(4): 44-47, 51.
CHENG Y Z, CAI Y F. Wood defect image segmentation algorithm based on fractional order CV model[J]. Forestry Machinery & Woodworking Equipment, 2018, 46(4): 44-47, 51.
LI C M, HUANG R, DING Z H, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2011, 20(7): 2007-2016.
李润佳. 基于LBF算法的树木图像分割方法的研究[D]. 哈尔滨: 东北林业大学, 2019.
陈立君. 基于流形支持向量机的木材表面缺陷识别方法的研究[D]. 哈尔滨: 东北林业大学, 2015.
党文静. 图像区域分割算法的研究与应用[D]. 淮南: 安徽理工大学, 2018.
明晓杭. 基于图像特征的木材表面缺陷检测系统设计与研究[D]. 宜昌: 三峡大学, 2019.
谢永华, 陈庆为. 木材缺陷的阈值分割算法研究[J]. 森林工程, 2014, 30(2): 38-42.
XIE Y H, CHEN Q W. Study on wood defect image threshold segmentation algorithms[J]. Forest Engineering, 2014, 30(2): 38-42.
李伟, 岳德鹏. 基于机器视觉的立木树干边缘检测及边缘直线提取[J]. 林业资源管理, 2018(5): 113-122.
LI W, YUE D P. Edge detection and edge line extraction of standing tree trunk based on machine vision[J]. Forest Resources Management, 2018(5): 113-122.
陈炜文. 基于机器视觉木材表面缺陷图像分割研究[D]. 广州: 华南农业大学, 2016.
邓路娜. CV模型的改进及其在图像分割应用中的研究[D]. 西安: 西安科技大学, 2019.
马锐, 张新东, 杨思渊, 等. 基于改进C-V模型的图像分割方法[J]. 信息通信, 2020, 33(6): 75-77.
MA R, ZHANG X D, YANG S Y, et al. An improved image segmentation method based on C-V model[J]. Information & Communications, 2020, 33(6): 75-77.
SONG W W, CHEN T Y, GU Z H, et al. Wood materials defects detection using image block percentile color histogram and eigenvector texture feature[C]//Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy, Advances in Intelligent Systems Research, 2015: 5.
柳青, 孟祥增, 冀翠萍. 图形形状特征提取前的重要工作[J]. 电脑知识与技术(学术交流), 2007, 3(16): 1115-1116.
LIU Q, MENG X Z, JI C P. The important works before abstracting graphics' characteristic of shape[J]. Computer Knowledge and Technology (Academic Exchange), 2007, 3(16): 1115-1116.
苑玮琦, 李绍丽, 李德健. 基于子区域变尺度高斯拟合的木材表面缺陷识别[J]. 仪器仪表学报, 2016, 37(4): 879-886.
YUAN W Q, LI S L, LI D J. Wood surface defect recognition based on sub-region zoom Gaussian fitting[J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 879-886.
赵乾. 基于极限学习机的实木板材缺陷检测算法研究[D]. 南京: 南京林业大学, 2018.
DENG Z Y, WANG Y Z, ZHANG H R. Detection method of wood skin defects based on bag-of-words model[C]//RICAI 2020: Proceedings of the 2020 2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence, 2020: 125-130.
XIE Y H, WANG J C. Study on the identification of the wood surface defects based on texture features[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19): 2231-2235.
ZHANG Y X, ZHAO Y Q, LIU Y, et al. Identification of wood defects based on LBP features[C]//Technical Committee on Control Theory, Chinese Association of Automation&Systems Engineering Society of China. Chengdu, 2016: 835-838.
Rahiddin R N N, Hashim U R, Ismail N H, et al. Classification of wood defect images using local binary pattern variants[J]. International Journal of Advances in Intelligent Informatics, 2020, 6(1): 36.
王清涛, 杨洁. 应用改进的灰度共生矩阵识别木材纹理多重特征值[J]. 西北林学院学报, 2019, 34(3): 191-195.
WANG Q T, YANG J. Application of improved gray symbiosis matrix to identify the multiple characteristic values of wood texture[J]. Journal of Northwest Forestry University, 2019, 34(3): 191-195.
Abdullah N D, Hashim U R, Ahmad S, et al. Analysis of texture features for wood defect classification[J]. Bulletin of Electrical Engineering and Informatics, 2020, 9(1): 121-128.
LI C, ZHANG Y Z, TU W J, et al. Soft measurement of wood defects based on LDA feature fusion and compressed sensor images[J]. Journal of Forestry Research, 2017, 28(6): 1285-1292.
徐梓敬, 贾培, 吴楠, 等. GA-SVM在木材缺陷识别中的应用[J]. 传感器与微系统, 2019, 38(9): 153-156.
XU Z J, JIA P, WU N, et al. Research on wood defect recognition technology based on GA-SVM[J]. Transducer and Microsystem Technologies, 2019, 38(9): 153-156.
郭慧, 王霄, 刘传泽, 等. 基于灰度共生矩阵和分层聚类的刨花板表面图像缺陷提取方法[J]. 林业科学, 2018, 54(11): 111-120.
GUO H, WANG X, LIU C Z, et al. Research on defect extraction of particleboard surface images based on gray level co-occurrence matrix and hierarchical clustering[J]. Scientia Silvae Sinicae, 2018, 54(11): 111-120.
JI X Y, GUO H, HU M H. Features extraction and classification of wood defect based on hu invariant moment and wavelet moment and BP neural network[C]//Proceedings of the 12th International Symposium on Visual Information Communication and Interaction, 2019: 1-5.
罗微, 孙丽萍. 利用局部二值模式和方向梯度直方图融合特征对木材缺陷的支持向量机学习分类[J]. 东北林业大学学报, 2019, 47(6): 70-73.
LUO W, SUN L P. Wood defect detection and classification by fusion feature and support vector machine[J]. Journal of Northeast Forestry University, 2019, 47(6): 70-73.
杨旭. 木材加工自动化中的板材缺陷检测技术研究[D]. 南京: 南京林业大学, 2016.
王泽润. 基于颜色与纹理特征的木材表面缺陷识别方法[D]. 杭州: 浙江农林大学, 2018.
车志勇. 基于线性判别分析(FDA)的迁移学习方法[D]. 广州: 广东工业大学, 2019.
Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
马旭, 刘应安, 业宁, 等. 基于核PCA与SVM算法的木材缺陷识别[J]. 常州大学学报(自然科学版), 2017, 29(3): 60-68.
MA X, LIU Y G, YE N, et al. Application of KPCA and SVM to wood defect recognition[J]. Journal of Changzhou University (Natural Science Edition), 2017, 29(3): 60-68.
Kamal K, Qayyum R, Mathavan S, et al. Wood defects classification using laws texture energy measures and supervised learning approach[J]. Advanced Engineering Informatics, 2017, 34: 125-135.
YU H L, LIANG Y L, LIANG H, et al. Recognition of wood surface defects with near infrared spectroscopy and machine vision[J]. Journal of Forestry Research, 2019, 30(6): 2379-2386.
微信公众号