三种针叶树材单根管胞形态与拉伸性能
Study on the Morphology and Tensile Properties of Single Tracheids of Three Softwoods
- 2022年36卷第1期 页码:43-48
DOI: 10.12326/j.2096-9694.2021045
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
扫 描 看 全 文
冯启明,任素红,吕建雄等.三种针叶树材单根管胞形态与拉伸性能[J].木材科学与技术,2022,36(01):43-48.
FENG Qi-ming,REN Su-hong,LYU Jian-xiong,et al.Study on the Morphology and Tensile Properties of Single Tracheids of Three Softwoods[J].Chinese Journal of Wood Science and Technology,2022,36(01):43-48.
选取杉木、白皮松、日本落叶松三种针叶树材为研究对象,探究并比较位于不同生长轮的单根管胞的形态参数及拉伸力学性能。结果表明,三种针叶树材的管胞长度、宽度、长宽比及拉伸强度、弹性模量、断裂伸长率基本符合随生长轮增加而增大的变化规律;杉木管胞的长度、宽度最大,日本落叶松晚材第9生长轮的管胞具有最佳的拉伸性能。方差分析表明,杉木和白皮松的第3生长轮与其他生长轮的管胞形态具有显著性差异(,P,<0.05)。杉木、日本落叶松的第3生长轮与其他生长轮的管胞拉伸力学性能具有显著性差异(,P,<0.05),而白皮松各生长轮间的拉伸力学性能没有显著性差异。研究结果为人工林木质纤维的高效利用及建筑用材提供依据。
The morphological parameters and tensile mechanical properties of single tracheids in different growth rings of Chinese fir (,Cunninghamia lanceolate,), Chinese lace-bark pine (,Pinus bungeana,), and Japanese larch (,Larix kaempferi,) were studied and compared. The results showed that the length, width, ratio of length to width, tensile strength, elongation at break, and the elastic modulus of the tracheids of the three species of softwood nearly increased with growth rings. The length and width of Chinese fir tracheids were the largest, and the mechanical properties of larch latewood from the ninth growth ring tracheids were the best among three species. Analysis of variance showed that the morphologies of tracheids of the third growth ring were significantly different from that of other growth rings (,P,<,0.05) of Chinese fir and Chinese lace-bark pine. There were significant differences in tracheid tensile mechanical properties between the third growth ring and other growth rings of Chinese fir and larch (,P,<,0.05), while there was no significant difference in that among all the growth rings of Chinese lace-bark pine. These data provided the important basis for the efficient utilization of plantation wood fiber and building lumber.
针叶树材单根管胞管胞形态拉伸力学性能
softwoodsingle tracheidtracheid morphologystretchmechanical properties
张波. 马尾松木材管胞形态及微力学性能研究[D]. 北京:中国林业科学研究院, 2007.
廖声熙,崔凯,张鹏,等. 翠柏木材管胞形态和结晶度的株内变异[J]. 西北林学院学报, 2012, 27(6): 159-164.
LIAO S X, CUI K, ZHANG P, et al. Variation of wood tracheid character and crystallinity of Calocedrus Macrolepis[J]. Journal of Morthwest Forestry University, 2012, 27(6): 159-164.
白默飞, 刘盛全, 周亮, 等. 兴安落叶松管胞形态特征和微纤丝角及其径向变异的研究[J]. 安徽农业大学学报, 2009, 36(2):189-193.
BAI M F, LIU S Q, ZHOU L, et al. Tracheid morphology characteristics and microfibrillar angle and their variation patterns of Larix gmelinii[J]. Journal of Anhui Agricultural University, 2009, 36(2):189-193.
邢新婷,邵亚丽,安珍,等. 长白落叶松木材单根管胞力学性能分析[J]. 安徽农业大学学报,2013, 40(4): 597-602.
XING X T, SHAO Y L, AN Z, et al. Mechanical properties of single tracheids of Larix olgensi wood[J]. Journal of Anhui Agricultural University, 2013, 40(4): 597-602.
Purusatama B D, Kim N H. Cross-field pitting characteristics of compression, lateral, and opposite wood in the stem wood of Ginkgo biloba and Pinus densiflora[J]. IAWA journal, 2019, 41(1):1-13.
冉茂亚, 李有贵, 秦磊, 等. 云南油杉瘿瘤材构造与化学成分分析及应用[J]. 木材科学与技术, 2021, 35(3):38-44.
RAN M Y, LI Y G, QIN L, et al. Microstructural characterization and chemical composition and application of burl wood of Keteleeria Evelyniana[J]. Chinese Journal of Wood Science and Technology, 2021, 35(3):38-44.
黄艳辉,费本华,赵荣军,等. 木材单根纤维力学性质研究进展[J]. 林业科学, 2010, 46(3):146-152.
HUANG Y H, FEI B H, ZHAO R J, et al. Advance on mechanics properties of wood single fiber[J]. Scientia Silvae Sinicae, 2010, 46(3):146-152.
Law K N, Garceau J J, Koran Z. Measurement of intra-increment tensile strength by using a zero-span technique[J]. Wood Science, 1977, 10:42-48.
Groom L H, Mott L, Shaler S M. Mechanical properties of individual southern pine tracheids. Part 1:Determination and variability of stress-strain curves with respect to tree height and juvenility[J]. Wood and Fiber Science, 2002, 34(1):14-27.
Terziev N, Daniel G, Marklund A. Effect of dislocations in Norway spruce tracheids on the mechanical properties of paper[M]. ESWN-Stockholm, 2003.
余雁, 江泽慧,任海青,等. 管胞细胞壁力学研究进展评述[J]. 林业科学,2003,39(5):133-139.
YU Y, JIANG Z H, REN H Q, et al. A review: current international research into cell wall mechanics of tracheids[J]. Scientia Silvae Sinicae, 2003,39(5):133-139.
费本华,余雁,黄安民,等. 木材细胞壁力学研究进展[J]. 生命科学, 2010, 22(11): 1173-1176.
FEI B H, YU Y, HUANG A M, et al. Progress in cell wall mechanics of wood[J]. Chinese Bulletin of Life Sciences, 2010, 22(11): 1173-1176.
黄艳辉. 毛竹纤维细胞力学性质研究[D]. 北京:中国林业科学研究院,2010.
上官蔚蔚,邢新婷,邵亚丽,等. 日本落叶松不同无性系单根纤维拉伸性能研究[J]. 木材加工机械, 2011, (5):16-20.
SHANGGUAN W W, XING X T, SHAO Y L, et al. Single fiber tensile performance among different Japanese Larch clones[J]. Wood Processing Machinery, 2011, (5):16-20.
史蔷,张守攻,吕建雄,等. 日本落叶松木材单根纤维的力学性能研究[J]. 木材加工机械,2012, (5):16-18,33.
SHI Q, ZHANG S G, LV J X, et al. Study on the mechanical properties of Larix kaempferi wood single fiber[J]. Wood Processing Machinery, 2012, (5):16-18,33.
邵亚丽. 落叶松木材管胞微力学性质变异性研究[D]. 呼和浩特:内蒙古农业大学,2012.
王戈,余雁,曹双平,等. 微拉伸技术测试植物单根纤维纵向拉伸性能[J]. 林业科学, 2011, 47(7):151-155.
WANG G, YU Y, CAO S P, et al. Longitudinal tensile properties determination of vegetable single fibers by the micro-tensile technology[J]. Scientia Silvae Sinicae, 2011, 47(7):151-155.
赵荣军,程献宝,孙娟,等. 针叶材管胞纵向抗拉强度研究[J]. 安徽农业大学学报, 2011, 38(4): 491-495.
ZHAO R J, CHENG X B, SUN J, et al. Study on the longitudinal tensile strength of the tracheids of soft wood[J]. Journal of Anhui Agricultural University, 2011, 38(4): 491-495.
张亮. 谷子茎秆与纤维拉伸力学特性测试研究[D]. 太原:山西农业大学,2019.
朱家伟. 棕榈棕干与棕丝维管束对比研究[D]. 合肥:安徽农业大学,2018.
陈长洁. 棕榈多尺度纤维材料的制备与性能[D]. 苏州:苏州大学,2019.
周永东, 高鑫, 周凡, 等. 40 mm厚杉木锯材高温干燥工艺研究[J]. 木材科学与技术, 2021, 35(2):54-58.
ZHOU Y D, GAO X, ZHOU F, et al. High-temperature drying technology for 40 mm-thickness Chinese fir lumber[J]. Chinese Journal of Wood Science and Technology, 2021, 35(2): 54-58.
李坚,刘一星,崔永志,等.人工林杉木幼龄材与成熟材的界定及材质早期预测[J].东北林业大学学报, 1999, (4):24-28.
LI J, LIU Y X, CUI Y Z, et al. Demarcation of juvenile wood and mature wood of planted Chinese fir and its wood quality prediction[J]. Journal of Northeast Forestry University, 1999, (4): 24-28.
鲍甫成,江泽慧,姜笑梅,等.中国主要人工林树种幼龄材与成熟材及人工林与天然林木材性质比较研究[J].林业科学, 1998(2): 65-67, 70-78.
BAO F C, JIANG Z H, JIANG X M, et al. Comparative studies on wood properties of juvenile vs. mature wood and plantation vs. natural forest of main plantation tree species in China[J]. Science Silvae Sinicae, 1998(2):65-67, 70-78.
高洪娜. 日本落叶松年轮及管胞性状与生态因子关系的研究[D]. 哈尔滨:东北林业大学,2014.
张淑琴. 人工林马尾松木材纵向拉伸弹性和蠕变性能研究[D]. 北京:中国林业科学研究院,2012.
赖猛. 落叶松无性系遗传评价与早期选择研究[D]. 北京:中国林业科学研究院,2014.
余雁. 人工林杉木管胞的纵向力学性质及其主要影响因子研究[D]. 北京:中国林业科学研究院,2003.
张双燕,费本华,余雁,等. 木质素含量对木材单根纤维拉伸性能的影响[J]. 北京林业大学学报,2012, 34(1):135-138.
ZHANG S Y, FEI B H, YU Y, et al. Influence of lignin content on tensile properties of single wood fiber[J]. Journal of Beijing Forestry University, 2012, 34(1):135-138.
孙海燕,苏明垒,吕建雄,等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版),2019(5): 50-58.
SUN H Y, SU M L, LV J X, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2019(5): 50-58.
相关作者
相关机构
微信公众号