杉木无性系管胞形态及其拉伸性能的研究
Study on Morphology and Tensile Properties of Wood Tracheid of Chinese Fir Clones
- 2021年35卷第5期 页码:12-17
DOI: 10.12326/j.2096-9694.2021020
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
扫 描 看 全 文
任素红,冯启明,吕建雄等.杉木无性系管胞形态及其拉伸性能的研究[J].木材科学与技术,2021,35(05):12-17.
REN Su-hong,FENG Qi-ming,LYU Jian-xiong,et al.Study on Morphology and Tensile Properties of Wood Tracheid of Chinese Fir Clones[J].Chinese Journal of Wood Science and Technology,2021,35(05):12-17.
为了给人工林杉木选育和合理利用提供依据,以3个杉木(,Cunninghamia lanceolata,)无性系为研究对象,测试分析管胞长度、宽度和长宽比以及单根管胞拉伸强度、拉伸弹性模量的变异规律。结果表明,管胞长度、长宽比、拉伸强度、拉伸弹性模量,在株内径向由髓心向外逐渐增大,在株内纵向1.3~5.5 m段自下向上逐渐增大。管胞的拉伸强度、拉伸弹性模量,与管胞长度、长宽比均呈极显著正相关(,P,<0.01)。杉木无性系管胞形态和单根管胞拉伸性能在幼龄与成熟时期材性呈现显著差异。
In order to provide scientific support for the breeding selection and reasonable utilization of Chinese fir (,Cunninghamia lanceolata,), three Chinese fir clones were selected to investigate the variation of tracheid length, tracheid width, tracheid length-width ratio, tensile strength, and tensile modulus of elasticity (MOE) of single tracheid. The results showed that tracheid length, length-width ratio, tensile strength, and tensile MOE increased gradually from pith to the bark, and increased gradually from the breast height 1.3 m to 5.5 m in longitudinal variation. Single tracheid tensile strength and tensile MOE showed significantly positively correlation to their tracheid length and length-width ratio (,P,<0.01). Tracheid morphology and tensile properties had significant differences in juvenile and mature wood.
杉木无性系单根管胞管胞形态拉伸性能
Chinese firclonessingle tracheidtracheid morphologytensile properties
尹焕焕, 刘青华, 周志春, 等. 马尾松无性系木材基本密度和纤维形态的变异及选择[J]. 浙江农林大学学报, 2020, 37(6): 1186-1192.
YIN H H, LIU Q H, ZHOU Z C, et al. Genetic variation of wood basic density and fiber morphology and selection of Pinus massoniana[J]. Journal of Zhejiang A & F University, 2020, 37(6): 1186-1192.
李超, 王哲, 郭宇, 等. 人工林杉木管胞形态与基本密度径向变异规律研究[J]. 林产工业, 2019,56(12): 30-33.
LI C, WANG Z, GUO Y, et al. Radial variation of tracheid morphology and basic density of Cunninghamia lanceolata plantation[J]. China Forest Products Industry, 2019, 56(12): 30-33.
孙海燕. 杉木无性系木材力学性质及其与微观结构相关性研究[D]. 北京: 中国林业科学研究院, 2019.
周永东, 高鑫, 周凡, 等. 40 mm厚杉木锯材高温干燥工艺研究[J]. 木材科学与技术, 2021, 35(2):54-58.
ZHOU Y D, GAO X, ZHOU F, et al. High-temperature drying technology for 40 mm-thickness chinese fir lumber[J].Chinese Journal of Wood Science and Technology,2021,35(2):54-58.
吴艳华, 孙海燕, 任海青, 等. 进口辐射松木材物理与力学性能评价[J]. 木材工业, 2019,33(2): 48-50.
WU Y H, SUN H Y, REN H Q, et al. Physical and mechanical properties of imported pinus radiata wood[J]. China Wood Industry, 2019, 33(2): 48-50.
余雁, 江泽慧, 任海青, 等. 管胞细胞壁力学研究进展评述[J]. 林业科学, 2003, 39(5): 133-139.
YU Y, JIANG Z H, REN H Q, et al. A review: current international research into cell wall mechanics of tracheids[J]. Scientia Silvae Sinicae, 2003, 39(5): 133-139.
Mott L, Groom L, Shaler S. Mechanical properties of individual southern pine fibers. Part I. Determination and variability of stress-strain curves with respect to tree height and juvenility[J]. Wood and Fiber Science, 2002, 34(1): 14-27.
Ingo B, Notburga G, Tanja Z. Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part I: Structural and chemical characterisation[J]. Holzforschung, 2005(59): 240-246.
Ingo B, Michaela E, Klaus F, et al. Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 3: Mechanical characterisation[J]. Holzforschung, 2005(59): 354-357.
王戈, 余雁, 曹双平, 等. 微拉伸技术测试植物单根纤维纵向拉伸性能[J]. 林业科学, 2011, 47(7): 151-155.
WANG G, YU Y, CAO S P, et al. Longitudinal tensile properties determination of vegetable single fibers by the micro-tensile technology[J]. Scientia Silvae Sinicae, 2011, 47(7): 151-155.
邢新婷, 邵亚丽, 安珍, 等. 长白落叶松木材单根管胞力学性能分析[J]. 安徽农业大学学报, 2013, 40(4): 597-602.
XING X T, SHAO Y L, AN Z, et al. Mechanical properties of single tracheids of Larix olgensi wood[J]. Journal of Anhui Agricultural University, 2013, 40(4): 597-602.
YU Y, WANG H K, LU F, et al. Bamboo fibers for composite applications: a mechanical and morphological investigation[J]. Journal of Wood Science, 2014, 49: 2559-2566.
CHEN H, YU Y, ZHONG T H, et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers[J]. Cellulose, 2017, 24(1): 333-347.
李坚,刘一星,崔永志,等. 人工林杉木幼龄材与成熟材的界定及材质早期预测[J]. 东北林业大学学报, 1999, 27(4): 24-28.
LI J, LIU Y X, CUI Y Z, et al. Demarcation of juvenile wood and mature wood of planted chinese fir and its wood quality prediction[J]. Journal of Northeast Forestry University, 1999, 27(4): 24-28.
WANG Y R, JIA R, SUN H Y, et al. Wood mechanical properties and their correlation with microstructure in Chinese fir clones[J]. IAWA Journal, 2021, DOI 10.1163/22941932-bja10047.
Richter H G, Grosser D, Heinz I, et al. IAWA list of microscopic features for softwood identification[J]. IAWA Journal, 2004, 25(1): 1-70.
胡拉,徐慧兰,冯源恒,等. 高产脂马尾松间伐材的材性分析[J]. 森林与环境学报, 2018, 38(3): 290-296.
HU L, XU H L, FENG Y H, et al. Analysis on basic properties of Pinus massoniana thinning wood with high-yield rosin[J]. Journal of Forest and Environment, 2018, 38(3): 290-296.
El-Hosseiny F, Page D H. The mechanical properties of single wood pulp fibres: Theories of strength[J]. Fibre Science and Technology, 1975, 8(1): 21-31.
WANG D, LIN L Y, FU F. Deformation mechanisms of wood cell walls under tensile loading: a comparative study of compression wood (CW) and normal wood (NW)[J]. Cellulose, 2020(27): 4161-4172.
LI Z, ZHAN T Y, Eder M, et al. Comparative studies on wood structure and microtensile properties between compression and opposite wood fibers of Chinese fir plantation[J]. Journal of Wood Science, 2021, 67(1): 1-6.
任海青,中井孝. 人工林杉木和杨树木材物理力学性质的株内变异研究[J]. 林业科学, 2006, 42(3): 13-20.
REN H Q, TakashiNakai. Intratree variability of wood density and main wood mechanical properties in Chinese fir and poplar plantation[J]. Scientia Silvae Sinicae, 2006, 42(3): 13-20.
孙海燕,苏明垒,吕建雄,等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5): 50-58.
SUN H Y, SU M L, LÜ J X, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(5): 50-58.
相关作者
相关机构
微信公众号