木竹碎料/菌丝体原位成型材料的性能
Properties of In-situ Molding Composites Made of Wood/Bamboo Splinter and Mycelium
- 2021年35卷第4期 页码:57-63
DOI: 10.12326/j.2096-9694.2020113
扫 描 看 全 文
1.衡水职业技术学院生物工程系,河北衡水 053000
2.国家林业和草原局北京林业机械研究所,北京 100029
3.中国林业科学研究院林业新技术研究所,北京 100091
扫 描 看 全 文
闫薇,史田田,李少博等.木竹碎料/菌丝体原位成型材料的性能[J].木材科学与技术,2021,35(04):57-63.
YAN Wei,SHI Tian-tian,LI Shao-bo,et al.Properties of In-situ Molding Composites Made of Wood/Bamboo Splinter and Mycelium[J].Chinese Journal of Wood Science and Technology,2021,35(04):57-63.
利用灵芝菌丝体与果树、杨榆和竹材3种碎料,分别制备木竹碎料/菌丝体原位成型材料。结果表明:果树碎料更适合灵芝菌丝体的生长。3种材料的2 h吸水厚度膨胀率介于3.71%~9.56%之间,24 h吸水厚度膨胀率介于8.82%~13.29%之间。在10%压缩变形时,果树碎料/菌丝体原位成型材料(GG)的压缩强度最大,其最终质量剩余率最大(35.56%),最大质量损失率较小(0.57%),热稳定性较好。果树碎料/菌丝体原位成型材料的导热系数<0.093 W/(m·K),保温性能与常用保温建筑材料性能相当。果树碎料/菌丝体原位成型材料具有较好的压缩强度、热稳定性和保温性能。
In-situ molding composites made of wood/bamboo splinter (fruit tree wood, poplar, elm, and bamboo) and,Ganoderma,lucidum, mycelium were studied. The results showed that the fruit tree wood splinter was suitable for the mycelium growth. The thickness swelling rate of water absorption of different type composites at 2 h and 24 h were 3.71%~9.56% and 8.82%~13.29%. The compressive strength of fruit tree wood splinter/mycelium in-situ molding composite (GG composite) was the highest value at 10% deformation. The final mass residual rate of GG composite was 35.56% after the thermogravimetric test, the maximum loss rate was at minimum(0.57%), GG composite showed good thermostability. The thermal conductivity of the GG composite was less than 0.093 W/(m·K), which thermal insulation performance was similar to that of the commonly used thermal insulation materials in the building industry. GG composite display good compressive strength, thermostability, and thermal insulation performance.
木竹碎料灵芝菌丝体原位成型材料压缩强度吸水厚度膨胀率保温性能
wood/bamboo splinterGanoderma lucidummyceliumin-situ molding compositescompressive strengththickness swelling rate of water absorptionthermal insulation properties
Chwieduk D A. Towards modern options of energy conservation in buildings[J].Renewable Energy, 2017(101): 1194-1202.
王飞, 李洪强, 康书硕, 等. 菌丝体/膨胀珍珠岩建筑用保温隔热复合材料实验研究[J].科学技术与工程, 2016, 16(20): 134-139.
WANG F, LI H Q, KANG S S, et al. The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings[J].Science Technology and Engineering, 2016, 16(20): 134-139.
Vo L T T, Navard P. Treatments of plant biomass for cementitious building materials-A review[J].Construction and Building Materials, 2016(121): 161-176.
Chetehouna K, Belayachi N, Lemée L, et al. Pyrolysis gases released during the thermal degradation of insulation materials based on straw fibers[J].Journal of Thermal Analysis and Calorimetry, 2015, 122(3): 1417-1422.
Jafari M, Jung J. Thermal properties of fly ashes and biomass ashes including wood bagasse ashes and sugarcane bagasse ashes[J].Journal of Materials in Civil Engineering, 2017, DOI: 10.1061/(ASCE)MT.1943-5533.0001733http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001733.
Carrasco-Hurtado B, Corpas-Iglesias F A, Cruz-Pérez N, et al. Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties[J].Construction and Building Materials, 2014(52): 155-165.
Yang Z J, Zhang F, Still B, et al. Physical and mechanical properties of fungal mycelium-based biofoam[J].Journal of Materials in Civil Engineering, 2017, DOI: 10.1061/(ASCE)MT.1943-5533.0001866http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001866.
Jiang L, Walczyk D, McIntyre G, et al. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation[J].Journal of Cleaner Production, 2019(207): 123-135.
Bruscato C, Malvessi E, Brandalise R N, et al. High performance of macrofungi in the production of mycelium-based biofoams using sawdust—Sustainable technology for waste reduction[J].Journal of Cleaner Production, 2019(234): 225-232.
Silverman J, Cao H T, Cobb K. Development of mushroom mycelium composites for footwear products[J].Clothing and Textiles Research Journal, 2020, 38(2): 119-133.
Attias N, Danai O, Abitbol T, et al. Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis[J].Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2019.119037http://dx.doi.org/10.1016/j.jclepro.2019.119037.
赵慧. 四种不同品种灵芝的质量研究[J].湖北民族大学学报(医学版), 2020, 37(2): 21-23.
ZHAO H. Study on the quality of four different varieties of Ganoderma lucidum[J].Journal of Hubei Minzu University (Medical Edition), 2020, 37(2): 21-23.
孙立新, 闫增峰, 董宏. 建筑保温材料导热系数环境影响因素的确定及方法研究[J].建筑科学, 2017, 33(8): 163-167.
SUN L X, YAN Z F, DONG H. Determination method research on environment dependence of thermal conductivity for thermal insulation material[J].Building Science, 2017, 33(8): 163-167.
尚舒, 牛宏震, 林理量, 等. 食用菌制全降解包装材料的研究[J].云南化工, 2015, 42(6): 23-27.
SHANG S, NIU H Z, LIN L L, et al. Preparation of a fully degraded packaging material by using the mushroom cultivation technology[J].Yunnan Chemical Technology, 2015, 42(6): 23-27.
Islam M R, Tudryn G, Bucinell R, et al. Morphology and mechanics of fungal mycelium[J].Scientific Reports, 2017, 7(1): 1-12.
夏慧敏, 张显权. 真菌菌丝-木屑复合材料的物理力学性能——以灵芝菌、木耳菌为例[J].东北林业大学学报, 2018, 46(4): 63-66.
XIA H M, ZHANG X Q. Mechanical properties of fungal hyphae/wood particle composites—taking Ganoderma lucidum and Auricularia auricular as example[J].Journal of Northeast Forestry University, 2018, 46(4): 63-66.
Liese W. The anatomy of bamboo culms[R].INBAR, Beijing, 1998.
洪欢, 关明杰, 田皓友. 热处理南洋楹木材的热重分析[J].林业科技开发, 2015, 29(5): 73-76.
HONG H, GUAN M J, TIAN H Y. Thermogravimetric analysis on heat-treated Albizzia Falcata wood[J].China Forestry Science and Technology, 2015, 29(5): 73-76.
Michalenko G O, Hohl H R, Rast D. Chemistry and architecture of the mycelial wall of Agaricus bisporus[J].Journal of General Microbiology, 1976, 92(2): 251-262.
Ruiz-Herrera J. Fungal cell wall: structure, synthesis, and assembly[M].Boca Raton:CRC press, 1991.
Girometta C, Dondi D, Baiguera R M, et al. Characterization of mycelia from wood-decay species by TGA and IR spectroscopy[J].Cellulose, 2020, 27(11): 6133-6148.
Jones M, Bhat T, Kandare E, et al. Thermal degradation and fire properties of fungal mycelium and mycelium - biomass composite materials[J].Scientific Reports, 2018, DOI: 10.1038/s41598-018-36032-9http://dx.doi.org/10.1038/s41598-018-36032-9.
杨修飞. 平板法测定生物质材料的导热系数[J].能源与节能, 2018(5): 46-47, 51.
YANG X F. Plate method for determining the coefficient of thermal conductivity of biomass materials[J].Energy and Energy Conservation, 2018(5): 46-47, 51.
肖力光, 李晶辉, 周宝玉, 等. 秸秆环保节能材料性能的研究[J].吉林建筑工程学院学报, 2008, 25(2): 1-6.
XIAO L G, LI J H, ZHOU B Y, et al. The study on preformance of the straw environmental protection and energy saving cement composite matreial[J].Journal of Jilin Institute of Architectural & Civil, 2008, 25(2): 1-6.
戢娇. 新型农作物秸秆复合墙体的应用研究[D].西安: 西安科技大学, 2011.
微信公众号