黑木相思木材物理性质株内变异研究
Within-Tree Variation of Physical Properties of
Acacia melanoxylon Wood- 2021年35卷第2期 页码:30-36
DOI: 10.12326/j.2096-9694.2020024
扫 描 看 全 文
1.中国林业科学研究院木材工业研究所,北京 100091
扫 描 看 全 文
周凡,付宗营,高鑫等.黑木相思木材物理性质株内变异研究[J].木材科学与技术,2021,35(02):30-36.
ZHOU Fan,FU Zong-ying,GAO Xin,et al.Within-Tree Variation of Physical Properties of Acacia melanoxylon Wood[J].Chinese Journal of Wood Science and Technology,2021,35(02):30-36.
研究我国黑木相思木材主要物理性质的株内变异规律。结果表明:黑木相思木材各项物理性质在树干南北向差异不显著,径向差异均明显大于纵向差异,株内变异主要是径向差异引起。生材含水率自心材区到边材区递减,木材密度的径向变化趋势则基本相反。木材干缩和湿胀率自心材向边材递增;而差异干缩在外部心材处最大。木材吸湿平衡含水率的径向变化趋势与吸湿滞后系数相反。实际生产应考虑黑木相思木材物理性质株内径向差异,制定科学合理干燥工艺。
The within-tree variation of wood physical properties was evaluated for ,Acacia melanoxylon, grown in China. The results showed that the differences of various physical properties in north-south direction were not significant. The radial variation was significantly greater than the longitudinal variation, which was the most distinctive in terms of the within-tree variation of various physical properties. The green moisture content of wood decreased gradually from the heartwood part toward the sapwood part, while the radial changing trend of wood density was basically opposite. The shrinkage and swelling values of wood gradually increased from heartwood to sapwood in the radial direction. The ratio of the tangential shrinkage to the radial shrinkage reached the highest level at the heartwood part near the sapwood. The radial variation trend of the sorption hysteresis coefficient was opposite to the hygroscopic equilibrium moisture content variation. These within-tree variation of wood properties need to be considered accordingly and comprehensively, and a scientific drying schedule should be determined when processing,Acacia melanoxylon, wood to improve its utilization.
黑木相思物理性质径向变异纵向变异
Acacia melanoxylonphysical propertyradial variationlongitudinal variation
Igartúa Dora D V, Monteoliva S. Basic wood density of Acacia melanoxylon R.Br related to sample tree height, tree and site[J].Investigacion Agraria Sistemas y Recursos Forestales, 2009, 18(1): 101-110.
MACHADO J S, LOUZADA J L, SANTOS A J A, et al. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.)[J].Materials and Design, 2014, 56: 975-980.
Bradbury G J, Potts B M, Beadle C L. Genetic and environmental variation in wood properties of Acacia melanoxylon[J].Annals of Forest Science, 2011, 68(8): 1363-1373.
陆葛, 杨林清, 康汉华. 黑木相思株内木材基本材性变化与树龄关系的研究[J].广东林业科技, 2011, 27(4): 37-40.
LU G, YANG L Q, KANG H H. Wood properties variation in radial direction within trees of different aged Acacia melanoxylon[J].Guangdong Forestry Science and Technology, 2011, 27(4): 37-40.
周凡, 付宗营, 高鑫, 等. 黑木相思木材物理和力学性质研究[J].木材科学与技术, 2021, 35(1): 26-29.
ZHOU F, FU Z Y, GAO X, et al. Physical and mechanical properties of Acacia melanoxylon wood[J].Chinese Journal of Wood Science and Technology, 2021, 35(1): 26-29.
Jalaludin Z, Hill C A S, Xie Y J, et al. Analysis of the water vapour sorption isotherms of thermally modified Acacia and sesendok[J].Wood Material Science and Engineering, 2010, 5(3-4): 194-203.
王哲, 王喜明. 活立木生理干燥过程中水分传输和散失机制探讨[J].林业科学, 2018, 54(3): 123-133.
WANG Z, WANG X M. Discussion on mechanism of water transmission and loss for standing trees during physiological drying[J].Scientia Silvae Sinicae, 2018, 54(3): 123-133.
江京辉, 李伯涛, 周凡, 等. 杉木生材含水率分布及其对气干的影响[J].林产工业, 2019, 46(1): 25-29.
JIANG J H, LI B T, ZHOU F, et al. Study on distribution of moisture content of green sawn Chinese fir lumber and its effect on air drying[J].China Forest Products Industry, 2019, 46(1): 25-29.
SANTOS A, SIMOES R, TAVARES M. Variation of some wood macroscopic properties along the stem of Acacia melanoxylon R. Br. adult trees in Portugal[J].Forest Systems, 2013, 22(3): 463-470.
卢翠香, 陈健波, 刘媛, 等. 邓恩桉生材含水率、年轮宽度及木材密度研究[J].桉树科技, 2014, 31(2):23-27.
LU C X, CHEN J B, LIU Y, et al. Research on moisture content of green wood, annual ring width and wood density of Eucalyptus dunnii[J].Eucalypt Science & Technology, 2014, 31(2):23-27.
成俊卿. 木材学[M].北京: 中国林业出版社, 1985: 435-481.
Gjerdrum P, Eikenes B. A model for spatial wood density gradients in Norway spruce stems and stochastic between-stem dissimilarities for basic and dry density[J].Wood Science and Technology, 2014, 48(1): 71-84.
王朝晖, 费本华, 任海青, 等. 长江滩地立木腐朽杨树与正常杨树生长与材性的比较研究[J].林业科学, 2001, 37(5): 113-119.
WANG Z H, FEI B H, REN H Q, et al. Comparative research on growth and wood properties between rotten poplar tree and normal one on floodbeaches along yangtzer river[J].Scientia Silvae Sinicae, 2001, 37(5): 113-119.
赵景尧, 蔡英春, 付宗营. 白桦树盘生长特性对干燥开裂的影响[J].林业科学, 2013, 49(7): 129-135.
ZHAO J Y, CAI Y C, FU Z Y. Effect of white birch disk characteristics on drying check behaviors[J].Scientia Silvae Sinicae, 2013, 49(7): 129-135.
黄彦快, 王喜明. 木材吸湿机理及其应用[J].世界林业研究, 2014, 27(3): 35-40.
HUANG Y K, WANG X M. Wood hygroscopic mechanism and its application[J].World Forestry Research, 2014, 27(3): 35-40.
齐华春, 刘一星, 程万里. 高温过热蒸汽处理木材的吸湿解吸特性[J].林业科学, 2010, 46(11): 110-114.
QI H C, LIU Y X, CHENG W L. Moisture absorption and desorption characteristics of superheated steam-treated wood under high temperature[J].Scientia Silvae Sinicae, 2010, 46(11): 110-114.
刘一星, 赵广杰. 木质资源材料学[M].北京: 中国林业出版社, 2004, 137-138.
彭辉, 蒋佳荔, 詹天翼, 等. 木材密度和含水率对其轴向超声波传播速度的影响[J].林业科学, 2016, 52(10): 117-124.
PENG H, JIANG J L, ZHAN T Y, et al. Influence of density and moisture content on ultrasound velocities along the longitudinal direction in wood[J].Scientia Silvae Sinicae, 2016, 52(10): 117-124.
Keunecke D, Sonderegger W, Pereteanu K, et al. Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves[J].Wood Science and Technology, 2006, 41(4): 309-327.
微信公众号