Study on Preparation of Carbon Aerogel Derived from ZIF-67/Oxidized Nanocellulose and Its Electrochemical Properties
- Vol. 38, Issue 2, Pages: 20-28(2024)
DOI: 10.12326/j.2096-9694.2023193
扫 描 看 全 文
浏览全部资源
扫码关注微信
Key Laboratory of Biomass Materials Science and Technology of Ministry of Education, Northeast Forestry University,Harbin 150040,Heilongjiang,China
Published: 30 March 2024 ,
扫 描 看 全 文
黄佳琪,陈芋,裴飞飞等.ZIF-67/氧化纳米纤维素衍生碳气凝胶的制备及其电化学性能研究[J].木材科学与技术,2024,38(02):20-28.
HUANG Jiaqi,CHEN Yu,PEI Feifei,et al.Study on Preparation of Carbon Aerogel Derived from ZIF-67/Oxidized Nanocellulose and Its Electrochemical Properties[J].Chinese Journal of Wood Science and Technology,2024,38(02):20-28.
为获得具有优异电化学性能的三维网络结构碳气凝胶,以TEMPO-氧化纳米纤维素(TEMPO-oxidized nanocellulose,TOCNF)为基体,加入ZIF-67混合均匀后,通过定向冷冻干燥和一步碳化法制备ZIF-67/TOCNF衍生的氧化钴/碳(CoO/C)气凝胶。扫描电子显微镜观察发现,CoO/C气凝胶能够维持碳化前ZIF-67/TOCNF的原始结构,并且由ZIF-67衍生的CoO可均匀负载在碳骨架结构中,提供更多的反应位点;XRD测试结果表明ZIF-67/TOCNF气凝胶显示了接近纯ZIF-67的典型ZIF-67晶体的衍射峰,而归属于TOCNF的衍射峰被抑制。Co是通过ZIF-67的热分解得到的,高温碳化能够得到更好结晶度的Co/C复合材料;拉曼光谱分析表明CoO/C复合材料的石墨化程度较高;电化学测试分析表明CoO/C电极材料的双电层电容与其内部的三维孔结构密切相关,相比于其他碳化温度(500、600、800 ℃),当碳化温度为700 °C时,CoO/C-700气凝胶电极材料具有较优的电化学性能,其比电容可达92 F/g(0.5 A/g),同时表现出较好的倍率性能和循环稳定性。
To obtain three-dimensional structured carbon aerogels with excellent electrochemical performance
cobalt oxide/carbon (CoO/C) aerogel derived from ZIF-67/TOCNF was prepared by directional freeze-drying and one-step carbonization
using TEMPO oxidized nanocellulose (TOCNF) as the matrix
adding ZIF-67. Results from scanning electron microscope (SEM) showed that the CoO/C aerogels can keep their original structure of ZIF-67/TOCNF before carbonization; CoO derived from ZIF-67 can be uniformly loaded in the carbon skeleton structure
providing more reaction sites. XRD analysis indicated that the ZIF-67/TOCNF aerogel showed that the diffraction peak of a typical ZIF-67 crystal was close to pure ZIF-67; the diffraction peak attributed to TOCNF was suppressed. Co was obtained via the thermal decomposition of ZIF-67. Co/C composite materials with better crystallinity were obtained by high-temperature carbonization. The test results through Raman spectroscopy indicated that the CoO/C composite material has a high degree of graphitization. The electrochemical test and analysis showed that the double-layer capacitance of CoO/C electrode materials was closely related to their internal three-dimensional pore structure. Compared with other carbonization temperatures (500
600
800 ℃)
when the carbonization temperature was 700 °C
the CoO/C-700 aerogel electrode material has the optimal electrochemical performance with a specific capacitance of up to 92 F/g (0.5 A/g) and exhibits desirable rate performance and cycle stability.
TEMPO-氧化纳米纤维素碳气凝胶咪唑酸盐金属有机骨架电极材料
TEMPO-oxidized nanocellulosecarbon aerogelimidazolate metal organic frameworkelectrode material
董浩, 李旭, 牛力, 等. 纳米纤维素/碳纳米管碳气凝胶的制备及其电化学性能[J]. 林业工程学报, 2023, 8(5): 121-129.
DONG H, LI X, NIU L, et al. Preparation and electrochemical performance of nanocellulose/carbon nanotube carbon aerogel[J]. Journal of Forestry Engineering, 2023, 8(5): 121-129.
WANG D, Mhatre S, CHEN J Q, et al. Composites based on electrospun fibers modified with cellulose nanocrystals and SiO2 for selective oil/water separation[J]. Carbohydrate Polymers, 2023, 299: 120119.
WANG M X, ZHANG J, YI X B, et al. High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel[J]. Beilstein Journal of Nanotechnology, 2020, 11: 240-251.
Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.
LAI C, SHENG L Y, LIAO S B, et al. Surface characterization of TEMPO-oxidized bacterial cellulose[J]. Surface and Interface Analysis, 2013, 45(11/12): 1673-1679.
杨喜. 竹纤维素炭气凝胶的制备及其在超级电容器中的应用研究[D]. 北京: 中国林业科学研究院, 2018.
Fumagalli M, Sanchez F, Boisseau S M, et al. Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents[J]. Soft Matter, 2013, 9(47): 11309-11317.
LONG L Y, WENG Y X, WANG Y Z. Cellulose aerogels: synthesis, applications, and prospects[J]. Polymers, 2018, 10(6): 623.
Rhim Y R, ZHANG D J, Rooney M, et al. Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature[J]. Carbon, 2010, 48(1): 31-40.
ZHANG Z, LI L, QING Y, et al. Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor[J]. The Journal of Physical Chemistry C, 2019, 123(38): 23374-23381.
LIU W, ZHENG K, WANG D H, et al. Co3O4 nanowire Arrays@Activated carbon fiber composite materials: facile hydrothermal synthesis and its electrochemical application[J]. Journal of Inorganic Materials, 2019, 34(5): 487.
LI S C, HU B C, DING Y W, et al. Wood-derived ultrathin carbon nanofiber aerogels[J]. Angewandte Chemie International Edition, 2018, 57(24): 7085-7090.
LI L X, LI B C, SUN H X, et al. Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(28): 14858-14864.
WANG L, ZHANG Z T, HAN Q, et al. Preparation of CdS-P25/ZIF-67 composite material and its photocatalytic CO2 reduction performance[J]. Applied Surface Science, 2022, 584: 152645.
岳利国, 沈迪军, 肖生福, 等. MOF复合生物质炭及其衍生物的高性能电容器[J]. 新能源进展, 2023, 11(3): 205-212.
YUE L G, SHEN D J, XIAO S F, et al. MOF composite biomass carbon and its derivatives for high-performance supercapacitor[J]. Advances in New and Renewable Energy, 2023, 11(3): 205-212.
张颖, 刘海涛, 王浩羽, 等. ZIF-67/石墨烯/凹凸棒的制备及电容器性能研究[J]. 广州化工, 2023, 51(6): 45-48.
ZHANG Y, LIU H T, WANG H Y, et al. Synthesis and electrochemical properties of ZIF-67/graphene/attapulgite for capacitors[J]. Guangzhou Chemical Industry, 2023, 51(6): 45-48.
YANG Z W, JIA D D, ZHAO Q, et al. A carbon cloth interlayer immobilizes carbon nanotube-supported ternary chalcogen compounds in novel lithium-chalcogenide batteries[J]. Electrochimica Acta, 2022, 436: 141465.
TAI S Y, LI Y, YANG L, et al. Magnetic-transition-metal oxides modified pollen-derived porous carbon for enhanced absorption performance[J]. International Journal of Environmental Research and Public Health, 2022, 19(24): 16740.
LIU Y J, YAO Z J, ZHOU J T, et al. Facile synthesis of MOF-derived concave cube nanocomposite by self-templated toward lightweight and wideband microwave absorption[J]. Carbon, 2022, 186: 574-588.
ZHOU J M, ZHENG H Y, LUAN Q J, et al. Improving the oxygen evolution activity of Co3O4 by introducing Ce species derived from Ce-substituted ZIF-67[J]. Sustainable Energy & Fuels, 2019, 3(11): 3201-3207.
WAN C C, JIAO Y, LIANG D X, et al. A geologic architecture system-inspired micro-/ nano-heterostructure design for high-performance energy storage[J]. Advanced Energy Materials, 2018, 8(33): 1802388.
WAN C C, JIAO Y, LI J. A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a flexible and free-standing electrode for symmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(33): 17267-17278.
Vargheese S, Muthu D, Pattappan D, et al. Hierarchical flower-like MnO2@nitrogen-doped porous carbon composite for symmetric supercapacitor: constructing a 9.0V symmetric supercapacitor cell[J]. Electrochimica Acta, 2020, 364: 137291.
相关文章
相关作者
相关机构