WANG Zhongcheng,YANG Na,LI Jiulin.Effect of Component Volume Fractions on Elastic Parameters of Poplar Wood Based on Improved Hofstetter Model[J].Chinese Journal of Wood Science and Technology,2024,38(02):12-19.
WANG Zhongcheng,YANG Na,LI Jiulin.Effect of Component Volume Fractions on Elastic Parameters of Poplar Wood Based on Improved Hofstetter Model[J].Chinese Journal of Wood Science and Technology,2024,38(02):12-19. DOI: 10.12326/j.2096-9694.2023152.
Effect of Component Volume Fractions on Elastic Parameters of Poplar Wood Based on Improved Hofstetter Model
The microstructure characteristics and composition of wood are important factors that affect elastic parameters. However
little research has been conducted on the impact of volume fraction changes in wood components. The Hofstetter continuum micromechanics model for wood was improved by introducing ash. The effect of changes in the component volume fraction of poplar wood on elastic parameters was discussed. The result shows that the improved Hofstetter model can accurately predict the longitudinal elastic modulus
E
L
with an absolute value of error of 13.71%. The elastic modulus and shear modulus of poplar increase significantly when the component volume fraction with high stiffness such as crystalline cellulose increases. When the volume fraction of polymer network or amorphous cellulose increases
the increase of Poisson’s ratio is significant. Changes in the volume fraction of lignin or hemicellulose have a small impact on all elastic parameters.
关键词
杨木改进Hofstetter模型连续介质假设组分弹性参数组分体积分数变化
Keywords
poplar woodimproved Hofstetter modelcontinuous medium hypothesiscomponentselastic parameterchanges in component volume fractions
references
GIBSON L J, ASHBY M F. Cellular solids: Structure and properties, chapter 10[M]. Pergamon Press, Oxford, 1988: 387-428.
EASTERLING K, HARRYSSON R, GIBSON L J, et al. On the mechanics of Balsa and other woods[J]. Proceedings of the Royal Society A: Mathematical, 1982, 383: 31-41.
WATANABE U, NORIMOTO M, OHGAMA T, et al. Tangential Young's modulus of coniferous early wood investigated using cell models[J]. Holzforschung, 1999, 53(2): 209-214.
BARBER N F, MEYLAN B A. The anisotropic shrinkage of wood. A theoretical model[J]. Holzforschung, 1964, 18(5): 146-156.
CAVE I D. A theory of the shrinkage of wood[J]. Wood Science and Technology, 1972, 6(4): 284-292.
MÜLLER U, SRETENOVIC A, GINDL W A, et al. Longitudinal shear properties of european larch wood related to cell-wall structure[J]. Wood and Fiber Science, 2004, 36(2): 143-151.
LANDIS E N, VASIC S, DAVIDS W G, et al. Coupled experiments and simulations of microstructural damage in wood[J]. Experimental Mechanics, 2002, 42(4): 389-394.
DAVIDS W, LANDIS E, VASIC S. Lattice models for the prediction of load-induced failure and damage in wood[J]. Wood and Fiber Science, 2003, 35(1): 120-134.
FOURNIER C R, DAVIDS W G, NAGY E, et al. Morphological lattice models for the simulation of softwood failure and fracture[J]. Holzforschung, 2007, 61(4): 360-366.
HOFSTETTER K, HELLMICH C, EBERHARDSTEINER J. Development and experimental validation of a continuum micromechanics model for the elasticity of wood[J]. European Journal of Mechanics, 2005, 24(6): 1030-1053.
HOFSTETTER K, HELLMICH C, EBERHARDSTEINER J, et al. Micromechanical estimates for elastic limit states in wood materials, revealing nanostructural failure mechanisms[J]. Mechanics of Advanced Materials and Structures, 2008, 15(6/7): 474-484.
HOFSTETTER K, GAMSTEDT E K. Hierarchical modelling of microstructural effects on mechanical properties of wood. A review COST Action E35 2004-2008: Wood machining-micromechanics and fracture[J]. Holzforschung, 2009, 63(2): 130-138.
HOFSTETTER K, HELLMICH C, EBERHARDSTEINER J. Continuum micromechanics estimation of wood strength[J]. Proceedings in Applied Mathematics and Mechanics, 2010, 6(1): 75-78.
BADER T K, HOFSTETTER K, HELLMICH C, et al. The poroelastic role of water in cell walls of the hierarchical composite “softwood”[J]. Acta Mechanica, 2011, 217(s1-2): 75-100.
BADER T K, HOFSTETTER K, HELLMICH C, et al. Poromechanical scale transitions of failure stresses in wood: from the lignin to the spruce level[J]. ZAMM - Journal of Applied Mathematics and Mechanics, 2010, 90(10/11): 750-767.
BORST K D, BADER T K. Structure-function relationships in hardwood-Insight from micromechanical modelling[J]. Journal of Theoretical Biology, 2014, 345: 78-91.
XU X R, CAI A H, LIU R, et al. Amorphous calcium carbonate in biomineralization[J]. Progress in Chemistry, 2008, 20(1): 54-59.
TASHIRO K, KOBAYASHI M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds[J]. Polymer, 1991, 32(8): 1516-1526.
BERGANDER A, SALMÉN L. Cell wall properties and their effects on the mechanical properties of fibers[J]. Journal of Materials Science, 2002, 37(1): 151-156.