Yeast Protein Adhesive Reinforced with Ammoniated Waste Paper Fiber
- Vol. 37, Issue 3, Pages: 19-26(2023)
DOI: 10.12326/j.2096-9694.2022229
扫 描 看 全 文
1.South China Agricultural University,Guangzhou 510642,Guangdong,China
扫 描 看 全 文
吴晓航,侯贤锋,孙瑾等.氨化废纸纤维增强酵母蛋白胶黏剂的研究[J].木材科学与技术,2023,37(03):19-26.
WU Xiaohang,HOU Xianfeng,SUN Jin,et al.Yeast Protein Adhesive Reinforced with Ammoniated Waste Paper Fiber[J].Chinese Journal of Wood Science and Technology,2023,37(03):19-26.
酵母蛋白具有生产效率高的优点,可用于制备蛋白质胶黏剂。本研究以酵母蛋白为基质、氨化废纸纤维为增强骨架,构建酵母蛋白质/交联剂/纤维的共交联纤维增强的蛋白胶体系,成功制备胶合板用胶黏剂。研究结果表明:环氧交联剂在蛋白质基质与纤维骨架的侧链间形成密集的化学连接,提高了蛋白质与纤维间的界面结合力;氨化废纸纤维增强酵母蛋白胶具有良好的结合强度与耐水性能,在氨化废纸纤维添加量为胶液质量的1.5%时,制备的胶合板Ⅰ、Ⅱ类湿强度分别达到0.79 MPa和1.76 MPa,满足GB/T 9846—2015《普通胶合板》中Ⅰ、Ⅱ类胶合板的强度要求。
Yeast protein has the advantages of high production efficiency, which is used to prepare protein adhesives. In this study, the plywood adhesive with excellent performance was successfully developed using yeast protein/crosslinker/fiber co-crosslinking fiber reinforcement protein adhesive system, which apllied yeast protein as the matrix and ammoniated waste paper fiber as the reinforced skeleton. With the cross-linking of epoxy cross-linker, dense chemical connections were formed between the multiple side groups of the fiber skeleton and protein matrix, which improved the interfacial bonding between protein and fiber. The fiber reinforcement substantially improved the adhesive bonding performance. Adding 1.5% of ammoniated waste paper fiber to the adhesive, the wet shear strengths of plywood reached 0.79 MPa for type I and 1.76 MPa for type II respectively, which met the strength requirements of plywood class Ⅰ and II in GB/T 9846—2015 ",Plywood for general use,".
酵母蛋白氨化废纸纤维胶黏剂胶合板
yeast proteinammoniated waste paper fiberadhesiveplywood
Pizzi A. Wood products and green chemistry[J]. Annals of Forest Science, 2015, 73(1):1-19.
XU Y, HAN Y, SHI S, et al. Preparation of a moderate viscosity, high performance and adequately-stabilized soy protein-based adhesive via recombination of protein molecules[J]. Journal of Cleaner Production, 2020, 255(C): 120303.
崔荣煜. 啤酒厂固体废弃物资源化利用研究[D]. 苏州: 苏州科技大学, 2017.
杨星月. 酶处理的啤酒废酵母干预糖尿病小鼠效果评价[D]. 天津:天津科技大学, 2018.
Podpora B, Widerski F, Sadowska A, et al. Spent brewer's yeast extracts as a new component of functional food[J]. Czech Journal of Food Sciences, 2016, 34: 554-563.
James A, Yang A. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties[J]. Food Chemistry, 2016, 194: 284-289.
张耀, 邱晓曼, 孙浩, 等. 酿酒酵母的工业化应用[J]. 中国生物工程杂志, 2022, 42(Z1): 26-36.
BAI M, HUANG Y, HUANG S, et al. A Novel Wood Adhesive Based on Yeast Hydrolysate[J]. Bioresources, 2019, 14: 6015-6024.
Kadimaliev D, Telyatnik V, Revin V, et al. Optimization of the conditions required for chemical and biological modification of the yeast waste from beer manufacturing to produce adhesive compositions[J]. Bioresources, 2012, 7: 1984-1993.
Decap N, Arroyo A, Enos J. Evaluation of single cell protein from yeast for the development of wood adhesives[J]. European Journal of Wood and Wood Products, 2016, 74(6): 821-828.
WANG Y, WANG M, ZHANG W, et al. Performance comparison of different plant fiber/ soybean protein adhesive composites[J]. BioResources, 2017, 12(4): 8813-8826.
张效林, 迪静静, 薄相峰, 等. 废纸高值化利用及其在材料领域中的研究进展[J]. 中国造纸学报,2021,36(3):17-25.
杨震. 纳米纤维素的制备及其增强环氧树脂的性能研究[D]. 西安: 陕西科技大学, 2022.
张春晓. 氨基功能化纤维素的制备及其吸附性能研究[J]. 化学研究与应用, 2022, 34(7): 1546-1553.
党园园. 自交联季铵化聚乙烯亚胺纸张增湿强剂的制备及作用机理[D]. 西安: 陕西科技大学, 2022.
Jablonskis A, Arshanitsa A, Arnautov A, et al. Evaluation of Ligno Boost™ softwood kraft lignin epoxidation as an approach for its application in cured epoxy resins[J]. Industrial Crops & Products, 2018, 112.
XU F, DONG Y, ZHANG W, et al. Preparation of cross-linked soy protein isolate-based environmentally-friendly films enhanced by PTGE and PAM[J]. Industrial Crops and Products, 2015, 67: 373-380.
刘晓蓉. 植物纤维增强增韧大豆蛋白胶黏剂及作用机制研究[D]. 北京: 北京林业大学, 2020.
French A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose ,2014, 21(2): 885-896.
修慧娟, 成锐, 李金宝, 等. 废纸纤维环氧化改性及其反应动力学研究[J]. 功能材料, 2018, 49(12): 12113-12117, 12122.
KANG H, SONG X, WANG Z, et al. High-performance and fully renewable soy protein isolate-based film from microcrystalline cellulose via bio-inspired poly(dopamine) surface modification[J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 4354-4360.
WANG Z, ZHAO S, SONG R, et al. The synergy between natural polyphenol-inspired catechol moieties and plant protein-derived bio-adhesive enhances the wet bonding strength[J]. Scientific Reports, 2017, 7: 9664.
汪宗涛. 水性环氧聚合物改性大豆蛋白胶黏剂研究[D]. 北京: 中国林业科学研究院, 2020.
吴志刚. 蛋白基胶黏剂交联改性及机理研究[D]. 北京: 北京林业大学, 2016.
KANG H, WANG Z, WANG Y, et al. Development of mainly plant protein-derived plywood bioadhesives via soy protein isolate fiber self-reinforced soybean meal composites[J]. Industrial Crops & Products, 2019, 133: 10-17.
PANG H, ZHAO S, WANG Z, et al. Development of soy protein-based adhesive with high water resistance and bonding strength by waterborne epoxy crosslinking strategy[J]. International Journal of Adhesion and Adhesives, 2020, 100: 102600.
LIU X, WANG K, GAO Q, et al. Bioinspired design by gecko structure and mussel chemistry for bio-based adhesive system through incorporating natural fibers[J]. Journal of Cleaner Production, 2019, 236(C): 117591.
ZHAO S, WANG Z, KANG H, et al. Fully bio-based soybean adhesive in situ cross-linked by interactive network skeleton from plant oil-anchored fiber[J]. Industrial Crops & Products, 2018, 122: 366-374.
相关文章
相关作者
相关机构