Effect of Particle Size on Properties of High-Density
Litchi chinensis Pruning Wood-Polyethylene Composites- Vol. 37, Issue 3, Pages: 35-43(2023)
DOI: 10.12326/j.2096-9694.2022214
扫 描 看 全 文
1.Key Laboratory of Bio-based Materials and Energy,Ministry of Education,South China Agricultural University,Guangzhou 510642,Guangdong,China
2.Department of Applied Physics,School of Electronic Engineering,School of Artificial Intelligence,South China Agricultural University,Guangzhou 510642,Guangdong,China
3.Lingnan Modern Agricultural Science and Technology Maoming Branch of Guangdong Provincial Laboratory, Maoming 525032,Guangdong,China
扫 描 看 全 文
陈世桓,周桥芳,王先菊等.纤维粒径对荔枝修枝木/高密度聚乙烯复合材料性能的影响[J].木材科学与技术,2023,37(03):35-43.
CHEN Shihuan,ZHOU Qiaofang,WANG Xianju,et al.Effect of Particle Size on Properties of High-Density Litchichinensis Pruning Wood-Polyethylene Composites[J].Chinese Journal of Wood Science and Technology,2023,37(03):35-43.
为了解决荔枝修枝木的利用问题,以荔枝修枝木纤维和高密度聚乙烯为主要原料,采用挤出成型的方法制备荔枝修枝木/HDPE复合材料(LWPC)。采用热重法测定荔枝木的热稳定性,利用体式显微镜观察荔枝木纤维形态,分析荔枝木纤维粒径对LWPC性能的影响。结果表明:荔枝木纤维初始降解温度为255 ℃;随着荔枝木纤维粒径的减小,其长径比先增大后逐渐减小。在动态流变测试中,随着荔枝木纤维粒径的减小,LWPC熔体的平衡转矩和平衡剪切热先降低后升高,储能模量、损耗模量和复数黏度增加。在动态热机械测试中,随着荔枝木纤维粒径的减小,LWPC的储能模量、损耗模量逐渐增大。LWPC的密度、吸水率、弯曲及拉伸性能呈现增大趋势,吸水厚度膨胀率则呈减小趋势。综合考虑LWPC的加工流变性能和物理力学性能,宜选用粒径<300 μm的荔枝木纤维,制得LWPC的弯曲强度、弯曲模量最高分别为31.11 MPa、2.91 GPa,达到GB/T 24137—2009《木塑装饰板》的要求。
In order to improve the utilization of ,Litchi chinensis ,pruning wood,Litchi,chinensis, wood/plastic composites (LWPC) were prepared by extrusion molding of ,Litchi,chinensis, pruning wood fibers and high-density polyethylene. The thermal stability of ,Litchi,chinensis, wood was measured using the thermogravimetric method. The fiber morphology of ,Litchi,chinensis, wood was evaluated using stereomicroscope. The effect of ,Litchi,chinensis, wood particle size on the performance of LWPC was analyzed. The results showed that the temperature was 255 ℃ when ,Litchi,chinensis, wood fibers initially degraded. As the size of ,Litchi,chinensis, wood fiber decreases, its length-diameter ratio first increases and then gradually decreases. In dynamic rheological testing, as the particle size decreases, the equilibrium torque and equilibrium shear heat of LWPC-melt first decrease and then increase, while the storage modulus, loss modulus, and complex viscosity increase. In dynamic thermal-mechanical testing, the storage modulus and loss modulus of LWPC gradually increase with the decrease in the particle size. The density, water absorption, and mechanical properties of LWPC show an increasing trend, while the water absorption thickness expansion rate shows a decreasing trend. Considering the processing rheological properties, physical, and mechanical properties of LWPC, the particle size of ,<, 300 μm is suggested to prepare LWPC. The maximum bending strength and flexural modulus of the LWPC are 31.11 MPa and 2.91 GPa respectively, which meet the performance requirements of GB/T 24137—2009 ,Wood Plastic Decorative Panels,.
荔枝木木纤维粒径木塑复合材料力学性能流变性能
Litchichinensis woodparticle size of wood fiberwood-plastic compositemechanical propertyrheological properties
王清文, 欧荣贤. 木质纤维材料的热塑性改性与塑性加工研究进展[J]. 林业科学, 2011, 47(6): 133-142.
WANG Q W, OU R X. Progress in thermoplasticization and plasticity-processing of lignocellulosic materials[J]. Scientia Silvae Sinicae, 2011, 47(6): 133-142.
高珣, 程万里, 王海刚, 等. 杨木纤维几何形态对木塑复合材料性能的影响[J]. 东北林业大学学报, 2014, 42(2): 100-103.
GAO X, CHENG W L, WANG H G, et al. Effect of wood fiber geometry on the properties of wood-plastic composites[J]. Journal of Northeast Forestry University, 2014, 42(2): 100-103.
徐俊杰, 郝笑龙, 周海洋, 等. 超高填充聚丙烯基木塑复合材料高低温性能[J]. 复合材料学报, 2021, 38(12): 4106-4122.
XU J J, HAO X L, ZHOU H Y, et al. High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4106-4122.
Murad A, Sirahbizu B. Experimental study on the effect of Cordia africana’s and Austria pine’s wood species on the performance of wood plastic composite[J]. Composites and Advanced Materials, 2022, 31:1-10.
陆鑫禹, 路琴, 孙东宝, 等. 桉木/PLA复合材料界面改性方法及其性能研究[J]. 化工新型材料, 2022, 50(7): 165-169.
LU X Y, LU Q, SUN D B, et al. Study on interfacial modification method and property of eucalyptus/PLA composite[J]. New Chemical Materials, 2022, 50(7): 165-169.
Mu Binshan, TANG Wei, LIU Tao, et al. Comparative study of high-density polyethylene-based biocomposites reinforced with various agricultural residue fibers[J]. Industrial Crops & Products, 2021, 172: 114053.
郑峰, 苏佳祥, 宋剑斌, 等. 马来酸酐接枝聚乙烯对稀土荧光竹塑复合材料性能的影响[J]. 材料导报, 2015, 29(20): 38-42.
ZHENG F, SU J X, SONG J B, et al. Effects of PE-g-MAH on the properties of rare earth fluorescent bamboo plastic composites[J]. Materials Review, 2015, 29(20): 38-42.
XU J J, HAO X L, TANG W, et al. Mechanical properties, morphology, and creep resistance of ultra-highly filled bamboo fiber/polypropylene composites: effects of filler content and melt flow index of polypropylene[J]. Construction and Building Materials, 2021, 310: 125289.
吴昊, 陈沛均, 胡传双, 等. 油茶果壳对PE-HD力学性能的影响[J]. 工程塑料应用, 2021, 49(3): 135-139.
WU H, CHEN P J, HU C S, et al. Effects of Camellia oleifera shell on mechanical properties of PE-HD[J]. Engineering Plastics Application, 2021, 49(3): 135-139.
Awad S , Hamouda T , Midani M ,et al. Date palm fibre geometry and its effect on the physical and mechanical properties of recycled polyvinyl chloride composite[J]. Industrial Crops and Products, 2021, 174. DOI:10.1016/j.indcrop.2021.114172http://dx.doi.org/10.1016/j.indcrop.2021.114172.
朱敬阳, 郭旭建, 王宁, 等. 粒径及填充量对木薯秸秆粉末/PPC复合材料力学性能的影响[J]. 木材工业, 2019, 33(3): 5-8.
ZHU J Y, GUO X J, WANG N, et al. Effect of cassava straw powder size and usage on mechanical properties of cassava straw/PPC composites[J]. China Wood Industry, 2019, 33(3): 5-8.
Petchwattana N, Covavisaruch S. Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride)[J]. Journal of Bionic Engineering, 2013, 10(1): 110-117.
齐文娥, 陈厚彬, 李洁欣. 2022年中国内地荔枝产业发展状况、趋势与对策[J]. 广东农业科学, 2023, 50(2): 147-155.
QI W E, CHEN H B, LI J X. Status, trend and countermeasures of development of Litchi industry in the mainland of China in 2022[J]. Guangdong Agricultural Sciences, 2023, 50(2): 147-155.
Chaudemanche S, Perrot A, Pimbert S, et al. Properties of an industrial extruded HDPE-WPC: the effect of the size distribution of wood flour particles[J]. Construction and Building Materials, 2018, 162: 543-552.
郝笑龙. 基于壳层增强聚乙烯基共挤出木塑性能研究[D]. 哈尔滨: 东北林业大学, 2018.
怀超平, 刘芳, 董佩文, 等. 木材热重试验及动力学分析[J]. 消防科学与技术, 2020, 39(6): 757-760.
HUAI C P, LIU F, DONG P W, et al. Thermogravimetric experiment and kinetic analysis of wood[J]. Fire Science and Technology, 2020, 39(6): 757-760.
QI Z Y, WANG B W, SUN C, et al. Comparison of properties of poly(lactic acid) composites prepared from different components of corn straw fiber[J]. International Journal of Molecular Sciences, 2022, 23(12): 6746.
LIU T, WANG Q W, XIE Y J, et al. Effects of use of coupling agents on the properties of microfibrillar composite based on high-density polyethylene and polyamide-6[J]. Polymer Bulletin, 2014, 71(3): 685-703.
相关文章
相关作者
相关机构