YANG Chunmei,LI Yueru,TIAN Xinchi,et al.Effects of Density and Moisture Content on Flexural Properties of Bamboo-Based Fiber Composites[J].Chinese Journal of Wood Science and Technology,2023,37(03):44-50.
YANG Chunmei,LI Yueru,TIAN Xinchi,et al.Effects of Density and Moisture Content on Flexural Properties of Bamboo-Based Fiber Composites[J].Chinese Journal of Wood Science and Technology,2023,37(03):44-50. DOI: 10.12326/j.2096-9694.2022193.
Effects of Density and Moisture Content on Flexural Properties of Bamboo-Based Fiber Composites
通过试验探究不同密度和含水率对竹基纤维复合材料的静曲强度(modulus of rupture,MOR)以及弹性模量(modulus of elasticity,MOE)的影响,并建立密度和含水率对MOR以及MOE影响的预测模型。结果表明,在测试区间内试板的密度与抗弯性能呈正相关;随着含水率升高,试板抗弯性能先增大后减小。根据预测模型,压制密度1.17 g/cm,3,、含水率11%左右的板材可以获得较高的MOR,大约为151.32 MPa;压制密度1.20 g/cm,3,、含水率10.65%左右的板材可以获得较高的MOE,大约为19.68 GPa。该研究为提高竹基纤维复合材料的抗弯性能以及生产实践提供一定理论指导。
Abstract
This paper investigated effects of different densities and moisture contents on the modulus of rupture (MOR) and modulus of elasticity (MOE) of bamboo-based fiber composite panels. A predictive model was developed to predict the effects of density and moisture content on MOR and MOE. The results showed that the density was positively correlated with the flexural properties of panels in the test range. With the increase in the moisture content, the flexural properties of the composite panels increased first and then decreased. Based on predictive model, the panels with the pressed density of 1.17 g/cm,3, and the moisture content of 11% obtain a higher MOR, which was 151.32 MPa. When pressed density was of 1.20 g/cm,3, and the moisture content was of 10.65%, the panel obtains a higher MOE of 19.68 GPa. The study provided reference for improving bamboo-based fiber composites flexural properties and a theoretical guidance for practical production.
HUANG Y X, JI Y H, YU W J. Development of bamboo scrimber: a literature review[J]. Journal of Wood Science, 2019, 65(1): 1-10.
余养伦. 高性能竹基纤维复合材料制造技术及机理研究[D]. 北京:中国林业科学研究院, 2014.
杨峰. 竹重组材/OSB复合材料工艺研究与性能预测[D]. 北京:中国林业科学研究院, 2014.
Kumar A, Vlach T, Laiblova L, et al. Engineered bamboo scrimber: influence of density on the mechanical and water absorption properties[J]. Construction and Building Materials, 2016, 127: 815-827.
QI J Q, YU W J, HUANG X Y, et al. Effect of bamboo scrimber density on vascular bundle morphology and properties[J]. China Wood Industry, 2013, 27(6): 25-28.
QU W, YANG C M, MA Y, et al. Analysis of the structure and hydraulic function of bordered pits using the lattice boltzman method[J]. Forests, 2021, 12(5): 526.
TIAN X C, MA H X, XUE B, et al. Effect of moisture content on heat transfer during hot-pressing process of bamboo scrimber with different densities[J]. Chinese Journal of Wood Science and Technology, 2022, 36(5): 50-55, 77.
TIAN X C, YU W J, MA H X, et al. Variation law of temperature field and prediction model in the preparation of bamboo scrimber[J]. Journal of Forestry Engineering, 2023, 8(1): 38-45.
Gindl W, Gupta H S, Grünwald C. Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation[J]. Canadian Journal of Botany, 2002, 80(10): 1029-1033.
WANG X Y, LUO X Y, REN H Q, et al. Bending failure mechanism of bamboo scrimber[J]. Construction and Building Materials, 2022, 326: 126892.
TANG Y, LI J B, SHEN Y C, et al. Phyllostachys edulis with high temperature heat treatments[J]. Journal of Zhejiang A & F University, 2014, 31(2): 167-171.