Study on Antibacterial, Antiviral and Film Properties of Catechin Modified Waterborne-UV Wood Coatings
- Vol. 37, Issue 2, Pages: 59-65(2023)
DOI: 10.12326/j.2096-9694.2022147
扫 描 看 全 文
1.Research Institute of Wood Industry,Chinese Academy of Forestry,Beijing 100091,China
2.Beijing Building Meterial Group Tiantan Furniture Company Limited,Beijing 100013,China
扫 描 看 全 文
燕力榕,冯启明,徐佳鹤等.儿茶素改性水性UV木器涂料的抗菌抗病毒及漆膜性能研究[J].木材科学与技术,2023,37(02):59-65.
YAN Lirong,FENG Qiming,XU Jiahe,et al.Study on Antibacterial, Antiviral and Film Properties of Catechin Modified Waterborne-UV Wood Coatings[J].Chinese Journal of Wood Science and Technology,2023,37(02):59-65.
选用一种适合与水性UV木器涂料混合的儿茶素类生物功能材料作为抗菌抗病毒助剂,制备具有抗菌抗病毒功能的环保木器涂料(标记为AWU涂料),并与未添加助剂的水性UV木器涂料(标记为WU涂料)对比分析,探究儿茶素改性水性UV木器涂料的抗菌抗病毒活性及漆膜理化性能。结果表明:AUV涂料漆膜的抗菌率及抗病毒活性率均大于99.99%,实现了抗菌抗病毒的效果;抗菌抗病毒助剂加入未对漆膜的微观形貌造成不利影响,同时改善了漆膜的铅笔硬度、光泽度,还优化了涂饰后木器表面的色度,为抗菌抗病毒木器涂料的研发与应用提供了理论依据。
In this study, a catechin biological-functional material was selected as the antibacterial and antiviral additive to mix with a waterborne-UV wood coating (labeled as AWU coating). The antibacterial and antiviral environment-friendly wood coating made in the laboratory was compared with the waterborne-UV coatings without the additives (labeled as WU coating). The advantages of the catechin modified waterborne-UV wood coatings were explored in aspects of antibacterial, antiviral, and physicochemical properties of the film. The results showed that the antibacterial rate and antiviral activity rate of the AWU film were greater than 99.99%, indicating a high antibacterial and antiviral efficiency. The addition of antibacterial and antiviral additives did not affect the micromorphology of the film. Furthermore, antibacterial and antiviral additives improved the hardness and glossiness of the film, and greatly optimized the chromaticity of the wood surface. This study provides a theoretical basis for the development and application of antibacterial and antiviral wood coatings.
儿茶素改性水性UV涂料抗菌抗病毒漆膜理化性能
catechin modified waterborne-UV coatingsantibacterialantiviralphysicochemical properties of coatings
孙英纯, 吴燕. 聚多巴胺改性纳米碳化硼对水性聚氨酯涂层性能的影响研究[J]. 木材科学与技术, 2022, 36(3): 46-51, 57.
SUN Y C, WU Y. Effect of polydopamine-modified nano-boron carbide on properties of waterborne polyurethane coatings[J]. Chinese Journal of Wood Science and Technology, 2022, 36(3): 46-51, 57.
SCRINZI E, ROSSI S, DEFLORIAN F, et al. Evaluation of aesthetic durability of waterborne polyurethane coatings applied on wood for interior applications[J]. Progress in Organic Coatings, 2011, 72(1): 81-87.
吴华贵, 龙玲, 徐建峰, 等. 涂布量对水性UV涂料干燥时间与涂膜性能的影响[J]. 木材工业, 2019, 33(5): 7-10.
WU H G, LONG L, XU J F, et al. Effect of UV-waterborne wood coating weight on film drying time and film performance[J]. China Wood Industry, 2019, 33(5): 7-10.
WIMMER R, KLÄUSLER O, NIEMZ P. Water sorption mechanisms of commercial wood adhesive films[J]. Wood Science and Technology, 2013, 47(4): 763-775.
刘如, 龙玲, 徐建峰, 等. 干燥温度与人造板基材对快干型水性UV木器涂料涂膜性能的影响[J]. 中国人造板, 2019, 26(12): 23-26.
LIU R, LONG L, XU J F, et al. Effect of drying temperature and wood-based panel substrate on film properties of fast waterborne UV curing wood coating[J]. China Wood Based Panels, 2019, 26(12): 23-26.
王健, 李慧敏, 邓晓蓓. 大气颗粒物吸附的空气微生物毒性效应的研究进展[J]. 生态毒理学报, 2021, 16(3): 66-77.
WANG J, LI H M, DENG X B. Toxicity of inhalable microorganisms attached to PM2.5[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 66-77.
QIU Q H, CHEN S Y, LI Y P, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020, 384(C): 123241.
LIN J, CHEN X Y, CHEN C Y, et al. Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6124-6136.
PEMMADA R, ZHU X X, DASH M, et al. Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics[J]. Materials (Basel, Switzerland), 2020, 13(18): 4041.
Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity[J]. Progress in Polymer Science, 2012, 37 (2): 281-339.
LIELEG O, LIELEG C, BLOOM J, et al. Mucin biopolymers as broad-spectrum antiviral agents[J]. Biomacromolecules, 2012, 13(6): 1724-1732.
KWON K Y, CHEESEMAN S, Frias-De-Diego A, et al. A liquid metal mediated metallic coating for antimicrobial and antiviral fabrics[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(45): e2104298.
VINCENT M, DUVAL R E, HARTEMANN P, et al. Contact killing and antimicrobial properties of copper[J]. Journal of Applied Microbiology, 2018, 124(5): 1032-1046.
CAGNO V, ANDREOZZI P, D’ALICARNASSO M, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism[J]. Nature Materials, 2018, 17(2): 195-203.
ZHONG H, ZHU Z, LIN J, et al. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances[J]. ACS Nano, 2020, 14(5): 6213-6221.
KRITCHENKOV A S, KLETSKOV A V, EGOROV A R, et al. New water-soluble derivatives of chitin and their based nanoparticles: Antibacterial and catalytic activity[J]. International Journal of Biological Macromolecules, 2020, 163: 2005-2012.
YANG L, WANG C, LI L, et al. Bioinspired integration of naturally occurring molecules towards universal and smart antibacterial coatings[J]. Advanced Functional Materials, 2022, 32(4): 2108749.
KRITCHENKOV A S, EGOROV A R, DUBASHYNSKAYA N V, et al. Natural polysaccharide-based smart (temperature sensing) and active (antibacterial, antioxidant and photoprotective) nanoparticles with potential application in biocompatible food coatings[J]. International Journal of Biological Macromolecules, 2019, 134: 480-486.
WU M S, BROWN A C. Applications of catechins in the treatment of bacterial infections [J]. Pathogens, 2021, 10 (5): 546.
SHAIK F B, SWARNALATHA K, MOHAN M C, et al. Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment[J]. Clinical Nutrition Open Science, 2022, 42: 62-72.
HALDAR J, AN D Q, ALVAREZ DE CIENFUEGOS L, et al. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47): 17667-17671.
柴春鹏, 马一飞. 不同粒径水性聚氨酯乳液的制备与性能研究[J]. 北京理工大学学报, 2018, 38(4): 417-422.
CHAI C P, MA Y F. Preparation and performance of waterborne polyurethane with different particle size[J]. Transactions of Beijing Institute of Technology, 2018, 38(4): 417-422.
曹坤丽, 吴燕, 于成宁, 等. 纤维素纳米晶体/KH560对UV固化水性木器涂层性能的影响[J]. 林业工程学报, 2016, 1(2): 135-139.
CAO K L, WU Y, YU C N, et al. The influence of CNC and KH560 on the properties of waterborne UV-curable wood coatings[J]. Journal of Forestry Engineering, 2016, 1(2): 135-139.
XU J, LIU R, WU H G, et al. Coating performance of water-based polyurethane-acrylate coating on bamboo/bamboo scrimber substrates[J]. Advances in Polymer Technology, 2019, 31: 1-8.
FOYERGABRIEL, BARRIOLMORGANE, NEGRELLCLAIRE, et al. Aldehyde functional monomer as efficient cross-linkable comonomer with biobased phenols in acrylic coatings[J]. Progress in Organic Coatings, 2015, 84: 1-8.
凌凯莉, 冯启明, 黄艳辉, 等. 改性丙烯酸水性漆对漆膜性能的影响[J]. 光谱学与光谱分析, 2020, 40(7): 2133-2137.
LING K L, FENG Q M, HUANG Y H, et al. Effect of modified acrylic water-based paint on the properties of paint film[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2133-2137.
相关文章
相关作者
相关机构