Research Progress on Nonlinear Constitutive Model for Wood
- Vol. 37, Issue 1, Pages: 18-24(2023)
DOI: 10.12326/j.2096-9694.2022129
扫 描 看 全 文
1.School of Civil Engineering,Southwest Forestry University,Kunming 650224,Yunnan,China
2.School of Materials Science and Engineering,Southwest Forestry University,Kunming 650224,Yunnan,China
扫 描 看 全 文
刘建辉,柏亚双,王兴宇等.木材非线性本构模型研究进展[J].木材科学与技术,2023,37(01):18-24.
LIU Jianhui,BAI Yashuang,WANG Xingyu,et al.Research Progress on Nonlinear Constitutive Model for Wood[J].Chinese Journal of Wood Science and Technology,2023,37(01):18-24.
木材本构模型是进行木构件数值分析的重要基础。介绍基于试验的经验模型和基于理论的弹性模型、弹塑性模型、损伤模型(弹性损伤模型、弹塑性损伤模型)、断裂模型和应变率模型,重点阐述现有模型的理论基础、特点及应用实例,分析其优缺点。总结本构模型在应用中待解决的难题,提出未来研究建立适用于动荷载作用下力学性能分析、考虑应变率影响的木材本构模型。
The wood constitutive model is an essential basis for the numerical analysis of timber members. This paper introduces the empirical model based on experiment, elastic model, elastic-plastic model, damage model (elastic damage model, elastic-plastic damage model), fracture model, and strain rate model based on theory. The theoretical basis, characteristics, and application examples of the existing models are emphasized. Furthermore, both advantages and disadvantages of the constitutive model for wood are analyzed. The current issues and problems in the application of the constitutive model are summarized. It is necessary to establish a wood constitutive model considering the effect of the strain rate, which is suitable for the analysis of mechanical properties under dynamic load.
木材本构模型应变率
woodconstitutive modelstrain rate
Mackenzie-Helnwein P, Müllner H W, Eberhardsteiner J, et al. Analysis of layered wooden shells using an orthotropic elasto-plastic model for multi-axial loading of clear spruce wood[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21/22/23/24): 2661-2685.
Conners T E. Segmented models for stress-strain diagrams[J]. Wood Science and Technology, 1989, 23(1): 65-73.
刘一星, 则元京, 师冈淳郎. 木材横纹压缩大变形应力-应变关系的定量表征[J]. 林业科学, 1995, 31(5): 436-442.
陶俊林, 蒋平, 余作生. 木材静压大变形本构关系研究[J]. 力学与实践, 2000, 22(5): 25-27.
TAO J L, JIANG P, YU Z S. On the static constitutive relation of wood with large deformation[J]. Mechanics and Engineering, 2000, 22(5): 25-27.
谢启芳, 张利朋, 王龙, 等. 木材径向反复受压应力-应变模型研究[J]. 湖南大学学报(自然科学版), 2018, 45(3): 55-61.
XIE Q F, ZHANG L P, WANG L, et al. Research on radial stress-strain model of wood under repeated compressive loading[J]. Journal of Hunan University (Natural Sciences), 2018, 45(3): 55-61.
Valipour H, Khorsandnia N, Crews K, et al. A simple strategy for constitutive modelling of timber[J]. Construction and Building Materials, 2014, 53: 138-148.
Cristóvão L, Santos . Quasi-static mechanical behaviour of a double-shear single dowel wood connection[J]. Construction and Building Materials, 2009, 23(1): 171-182.
Tabiei A, Wu J. Three-dimensional nonlinear orthotropic finite element material model for wood[J]. Composite Structures, 2000, 50(2): 143-149.
Mascia N T, Vanalli L. Evaluation of the coefficients of mutual influence of wood through off-axis compression tests[J]. Construction and Building Materials, 2012, 30: 522-528.
LI P, GUO Y B, Shim V P W. A constitutive model for transversely isotropic material with anisotropic hardening[J]. International Journal of Solids and Structures, 2018, 138: 40-49.
Clouston P L, Lam F. Computational modeling of strand-based wood composites[J]. Journal of Engineering Mechanics, 2001, 127(8): 844-851.
Adibaskoro T, Sołowski W, Hostikka S. Multi-surfaced elasto-plastic wood material model in material point method[J]. International Journal of Solids and Structures, 2022, 236/237: 111333.
Hill R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1033): 281-297.
Hoffman O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials, 1967, 1(2): 200-206.
Tsai S W, Wu E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80.
Kharouf N, McClure G, Smith I. Postelastic behavior of single- and double-bolt timber connections[J]. Journal of Structural Engineering, 2005, 131(1): 188-196.
XU B H, Bouchaïr A, Taazount M, et al. Numerical and experimental analyses of multiple-dowel steel-to-timber joints in tension perpendicular to grain[J]. Engineering Structures, 2009, 31(10): 2357-2367.
杨娜, 张雷, 秦术杰. 一种描述木材受压的非线性本构模型及试验验证[J]. 土木工程学报, 2017, 50(4): 80-88.
YANG N, ZHANG L, QIN S J. A nonlinear constitutive model for characterizing wood under compressive load and its test verification[J]. China Civil Engineering Journal, 2017, 50(4): 80-88.
SUN C T, CHEN J L. A simple flow rule for characterizing nonlinear behavior of fiber composites[J]. Journal of Composite Materials, 1989, 23(10): 1009-1020.
姜绍飞, 乔泽惠, 吴铭昊, 等. 考虑环境与荷载长期共同作用的木材本构模型研究[J]. 建筑结构学报, 2021, 42(8): 160-168.
JIANG S F, QIAO Z H, WU M H, et al. Study on wooden constitutive model considering long-term effects of environment and loads[J]. Journal of Building Structures, 2021, 42(8): 160-168.
Mackenzie-Helnwein P, Eberhardsteiner J, Hanhijärvi A. Constitutive model for the short-term failure analysis of wood under multiaxial states of stress: Effect of radial compression[M]. na, 2002.
Mackenzie-Helnwein P, Eberhardsteiner J, Mang H A. A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details[J]. Computational Mechanics, 2003, 31(1): 204-218.
Schmidt J, Kaliske M. Models for numerical failure analysis of wooden structures[J]. Engineering Structures, 2009, 31(2): 571-579.
Benvenuti E, Orlando N, Gebhardt C, et al. An orthotropic multi-surface damage-plasticity FE-formulation for wood: part I - Constitutive model[J]. Computers & Structures, 2020, 240: 106350.
Gharib M, Hassanieh A, Valipour H, et al. Three-dimensional constitutive modelling of arbitrarily orientated timber based on continuum damage mechanics[J]. Finite Elements in Analysis and Design, 2017, 135: 79-90.
余寿文, 冯西桥. 损伤力学[M]. 北京: 清华大学出版社, 1997.
PENG Z G, LI H, LIU H L, et al. Meso-damage theory and its application in research of materials science[J]. Applied Mechanics and Materials, 2014, 664: 48-51.
Wittel F K, Dill-Langer G, Bernd-H. Modeling of damage evolution in soft-wood perpendicular to grain by means of a discrete element approach[J]. Computational Materials Science, 2004, 32(3): 594-603.
李大纲. 木材细胞壁细观断裂及其损伤机理[J]. 科学技术与工程, 2004, 4(1): 24-27.
LI D G. The mechanism of meso damage and crack of wood cell wall[J]. Science Technology and Engineer, 2004, 4(1): 24-27.
Maimí P, Camanho P P, Mayugo J A, et al. A continuum damage model for composite laminates: part II-Computational implementation and validation[J]. Mechanics of Materials, 2007, 39(10): 909-919.
Bažant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3): 155-177.
Duvaut G, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique[J].Archive for Rational Mechanics and Analysis, 1972, 46(4): 241-279.
Pijaudier-Cabot G, Bažant Z P. Nonlocal damage theory[J]. Journal of Engineering Mechanics, 1987, 113(10): 1512-1533.
Sandhaas C. Mechanical behaviour of timber joints with solid-in steel plates [D]. Delft, Netherlands: Delft University of Technology, 2012.
ZHANG L P, XIE Q F, ZHANG B Z, et al. Three-dimensional elastic-plastic damage constitutive model of wood[J]. Holzforschung, 2021, 75(6): 526-544.
Sandhaas C, Kuilen J D, Blass H. Constitutive model for wood based on continuum damage mechanics[C]//WCTE, World conference on timber engineering, Auckland, New Zealand, 2012.
ZHANG L P, XIE Q F, WU Y J, et al. Damage nonlinear analysis on beam and column members with damages in ancient timber structures based on elastic-plastic damage constitutive model of wood[J]. Journal of Civil and Environmental Engineering, 2022, 44(2): 98-106.
Khelifa M, Khennane A, El Ganaoui M, et al. Numerical damage prediction in dowel connections of wooden structures[J]. Materials and Structures, 2016, 49(5): 1829-1840.
Sirumbal-Zapata L F, Mlaga-Chuquitaype C, Elghazouli A Y. A three-dimensional plasticity-damage constitutive model for timber under cyclic loads[J]. Computers and Structures, 2018, 195(C): 47-63.
Sirumbal-Zapata L F, Málaga-Chuquitaype C, Elghazouli A Y. Experimental assessment and damage modelling of hybrid timber beam-to-steel column connections under cyclic loads[J]. Engineering Structures, 2019, 200: 109682.
王明谦, 宋晓滨, 顾祥林. 基于三维弹塑性损伤模型的木材非线性分析[J]. 土木工程学报, 2018, 51(7): 22-28, 49.
WANG M Q, SONG X B, GU X L. Nonlinear analysis of wood based on three-dimensional combined elastic-plastic and damage model[J]. China Civil Engineering Journal, 2018, 51(7): 22-28, 49.
Claude Feldman Pambou Nziengui, Samuel Ikogou, Rostand Moutou Pitti. Impact of cyclic compressive loading and moisture content on the mechanical behavior of Aucoumea Klaineana Pierre[J]. Wood Material Science and Engineering, 2017, 13(4): 190-196.
Engonga Edzang A C, Pambou Nziengui C F, Ekomy Ango S, et al. Comparative studies of three tropical wood species under compressive cyclic loading and moisture content changes[J]. Wood Material Science & Engineering, 2021, 16(3): 196-203.
XU B H, Bouchaïr A, Racher P. Appropriate wood constitutive law for simulation of nonlinear behavior of timber joints[J]. Journal of Materials in Civil Engineering, 2014, 26(6): 04014004.
Iraola B, Cabrero J M. An algorithm to model wood accounting for different tension and compression elastic and failure behaviors[J]. Engineering Structures, 2016, 117: 332-343.
Daudeville L, Davenne L, Yasumura M. Prediction of the load carrying capacity of bolted timber joints[J]. Wood Science and Technology, 1999, 33(1): 15-29.
Yasumura M, Daudeville L. Fracture of multiply-bolted joints under lateral force perpendicular to wood grain[J]. Journal of Wood Science, 2000, 46(3): 187-192.
Ballerini M, Rizzi M. Numerical analyses for the prediction of the splitting strength of beams loaded perpendicular-to-grain by dowel-type connections[J].Materials and Structures, 2007, 40(1): 139-149.
Vasic S, Smith I, Landis E. Finite element techniques and models for wood fracture mechanics[J]. Wood Science and Technology, 2005, 39(1): 3-17.
HE M J, TAO D, LI Z, et al. Mechanical behavior of dowel-type joints made of wood scrimber composite[J]. Materials, 2016, 9(7): 581.
钟卫洲, 宋顺成, 黄西成, 等. 三种加载方向下云杉静动态力学性能研究[J]. 力学学报, 2011, 43(6): 1141-1150.
ZHONG W Z, SONG S C, HUANG X C, et al. Research on static and dynamic mechanical properties of spruce wood by three loading directions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1141-1150.
Wouts J, Haugou G, Oudjene M, et al. Strain rate effects on the compressive response of wood and energy absorption capabilities- Part A: experimental investigations[J]. Composite Structures, 2016, 149: 315-328.
Polocoșer T, Kasal B, Stöckel F. State-of-the-art: intermediate and high strain rate testing of solid wood[J]. Wood Science and Technology, 2017, 51(6): 1479-1534.
Weeks C A. Nonlinear rate dependent response of thick-section composite laminates[D]. USA: Purdue University, 1995.
Adalian C, Morlier P. “WOOD MODEL” for the dynamic behaviour of wood in multiaxial compression[J].Holz Als Roh- Und Werkstoff, 2002, 60(6): 433-439.
钟卫洲, 邓志方, 黄西成, 等. 中应变率加载下云杉各向异性力学行为研究[J]. 工程力学, 2016, 33(5): 25-33.
ZHONG W Z, DENG Z F, HUANG X C, et al. Investigation on anisotropic behavior of spruce mechanical properties under medium strain rate loading conditions[J]. Engineering Mechanics, 2016, 33(5): 25-33.
许威. 杨木静动态压缩本构模型研究[J]. 包装工程, 2019, 40(11): 86-93.
XU W. Static and dynamic compression constitutive model of poplar wood[J]. Packaging Engineering, 2019, 40(11): 86-93.
LIU Q L, Subhash G. A phenomenological constitutive model for foams under large deformations[J]. Polymer Engineering and Science, 2004, 44(3): 463-473.
Jeong K Y, Cheon S S, Munshi M B. A constitutive model for polyurethane foam with strain rate sensitivity[J]. Journal of Mechanical Science and Technology, 2012, 26(7): 2033-2038.
Supriatna D, Steinke C, Kaliske M. Advances in computational dynamics for inelastic continua with anisotropic material behavior: formulation and numerical implementation of inelastic ductile behavior of spruce wood[J]. International Journal of Solids and Structures, 2020, 198: 41-56.
Bindiganavile V S. Dynamic fracture toughness of fiber-reinforced concrete[D]. Vancouver, British Columbia, Canada: The University of British Columbia, 2003.
XIE Q F, ZHANG L P, ZHANG B Z, et al. Dynamic parallel-to-grain compressive properties of three softwoods under seismic strain rates: tests and constitutive modeling[J]. Holzforschung, 2020, 74(10): 927-937.
张利朋, 谢启芳, 刘伊津, 等.考虑地震应变率效应的木材三维弹塑性损伤本构模型及其数值实现[J/OL]. 土木工程学报:1-11[2022-08-17].DOI:10.15951/j.tmgcxb.21111177http://dx.doi.org/10.15951/j.tmgcxb.21111177.
相关文章
相关作者
相关机构