Curved Groove Structure Design of Ultra-Thin Circular Saw Blade based on Topology and Shape Optimization
- Vol. 37, Issue 1, Pages: 91-98(2023)
DOI: 10.12326/j.2096-9694.2022113
扫 描 看 全 文
1.College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,Heilongjiang,China
2.Jinyu Tiantan (Tangshan)Wood Industry Co.,Ltd.,Tangshan 063000,Hebei,China
扫 描 看 全 文
贾娜,陈肖男,郭磊等.基于拓扑与形状优化的超薄圆锯片曲线缝结构设计[J].木材科学与技术,2023,37(01):91-98.
JIA Na,CHEN Xiaonan,GUO Lei,et al.Curved Groove Structure Design of Ultra-Thin Circular Saw Blade based on Topology and Shape Optimization[J].Chinese Journal of Wood Science and Technology,2023,37(01):91-98.
为实现超薄型圆锯片曲线缝的结构设计,基于变密度法拓扑优化和模式搜索算法的形状优化相结合的方法,对圆锯片的曲线缝结构进行优化设计。通过基于变密度法的拓扑优化,确定曲线缝开设位置;以圆锯片整体振幅作为评价标准,以拓扑优化后得出的设计域作为边界条件,通过模式搜索算法对圆锯片曲线缝结构形状进行优化,得出给定约束和载荷条件下的最优解。在试验过程中进一步证明了曲线缝形状对锯片轴向振动影响的重要性。
To realize the curved groove structure design of the ultra-thin circular saw blade, the curved groove structure of the circular saw blade were optimized by combining topology optimization based on variable density method and shape optimization based on the pattern search algorithm. Using topological optimization based on the variable density method to determine the location of curved groove. The overall amplitude of the circular saw blade was taken as the evaluation criterion, the design domain derived from the topological optimization was taken as the boundary condition. The shape of the curved groove structure of the circular saw blade was optimized by the pattern search algorithm. The optimum solution of groove position, structure, and shape of circular saw blade was obtained under given constraints and loads. The importance of the shape of the curve slot on the axial vibration of the saw blade was further proved in the test.
超薄圆锯片曲线缝基于变密度法拓扑优化基于模式搜索算法形状优化结构设计
ultra-thin circular saw bladecurve groovetopology optimization based on variable density methodshape optimization based on the pattern search algorithmstructure design
安源, 李博, 张勃洋, 等. 温度与离心力载荷对不同基体结构圆锯片横向刚度的影响[J]. 木材科学与技术, 2021, 35(6): 44-48.
AN Y, LI B, ZHANG B Y, et al. Effects of temperature and centrifugal load on transverse stiffness of circular saw blades with different structures[J]. Chinese Journal of Wood Science and Technology, 2021, 35(6): 44-48.
张涛, 黄国钦, 李远, 等. 金刚石圆锯片轴向变形测试系统的构建与实验研究[J]. 金刚石与磨料磨具工程, 2009, 29(6): 33-36, 42.
ZHANG T, HUANG G Q, LI Y, et al. Building of test system on axial deformation of diamond circular saw blade[J]. Diamond & Abrasives Engineering, 2009, 29(6): 33-36, 42.
田永军, 孙爽, 张翔宇, 等. 金刚石圆锯片振动与噪声机理及其减振降噪技术研究综述[J]. 机械设计, 2020, 37(3): 1-13.
TIAN Y J, SUN S, ZHANG X Y, et al. Review of the research on the vibration and noise mechanism of diamond circular saw blades and the vibration-and-noise reduction technology[J]. Journal of Machine Design, 2020, 37(3): 1-13.
于家伟, 张进生, 王志, 等. 基于FEM/BEM的开降噪孔金刚石圆锯片孔形研究[J]. 金刚石与磨料磨具工程, 2016, 36(4): 63-67, 74.
YU J W, ZHANG J S, WANG Z, et al. Study on shape of noise-reduction holes on diamond circular saw blade based on FEM/BEM[J]. Diamond & Abrasives Engineering, 2016, 36(4): 63-67, 74.
孙传涛, 张德臣, 代爽. 圆孔锯锯片的模态分析[J]. 辽宁科技大学学报, 2015, 38(5): 358-362.
SUN C T, ZHANG D C, DAI S. Modal analysis of saw blade of hole saw[J]. Journal of University of Science and Technology Liaoning, 2015, 38(5): 358-362.
LY/T 2001—2011,超薄硬质合金圆锯片[S].
马建敏, 黄协清, 陈天宁. 圆盘锯片振动特性的计算分析[J]. 机械科学与技术, 1999, 18(3): 366-368.
MA J M, HUANG X Q, CHEN T N. Calculation and analysis of natural characteristics of disk sow blade[J]. Mechanical Science and Technology, 1999, 18(3): 366-368.
周富强. 超薄硬质合金圆锯片在木材加工中的应用[J]. 南方农机, 2015, 46(5): 35-36.
ZHOU F Q. Application of ultra-thin carbide circular saw blade in wood processing[J]. China Southern Agricultural Machinery, 2015, 46(5): 35-36.
阎杰, 杨永竹, 谢军, 等. 离散体结构拓扑优化综述[J]. 科学技术与工程, 2020, 20(24): 9673-9682.
YAN J, YANG Y Z, XIE J, et al. Overview of discrete structure topology optimization[J]. Science Technology and Engineering, 2020, 20(24): 9673-9682.
罗震, 陈立平, 黄玉盈, 等. 连续体结构的拓扑优化设计[J]. 力学进展, 2004, 34(4): 463-476.
LUO Z, CHEN L P, HUANG Y Y, et al. Topological optimization design for continuum structures[J]. Advances in Mechanics, 2004, 34(4): 463-476.
林利红, 文琴, 王成. 圆锯片结构拓扑优化[J]. 机械设计, 2018, 35(6): 24-28.
LIN L H, WEN Q, WANG C. Structural topology optimization of circular saw blade[J]. Journal of Machine Design, 2018, 35(6): 24-28.
田永军, 徐国胜, 赵海龙, 等. 低噪声圆锯片动态拓扑优化设计研究[J]. 振动与冲击, 2019, 38(6): 159-165.
TIAN Y J, XU G S, ZHAO H L, et al. Dynamic topology optimization design of low noise diamond circular saw blades[J]. Journal of Vibration and Shock, 2019, 38(6): 159-165.
WU T, WANG D, ZHAO M. Optimization of diamond circular saw blade by vibration noise analysis[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1138(1): 012045.
Gau W H, Chen K N, Hwang Y L. Model updating and structural optimization of circular saw blades with internal slots[J]. Advances in Mechanical Engineering, 2014, 6: 546496.
姚涛, 段国林, 樊胜秋. 基于遗传算法和NURBS曲线的开槽锯片减振优化设计[J]. 机械设计与制造, 2013(5): 70-73.
YAO T, DUAN G L, FAN S Q. Optimal design to reduce vibration and noise of circular saw blade with slots based on genetic algorithm and NURBS curve[J]. Machinery Design & Manufacture, 2013(5): 70-73.
林利红, 王成, 王锴, 等. 切割片减振降噪的优化设计[J]. 重庆大学学报, 2016, 39(2): 10-16.
LIN L H, WANG C, WANG K, et al. Optimal design of vibration and noise reduction of the cutting plate[J]. Journal of Chongqing University, 2016, 39(2): 10-16.
李启宏, 李海艳. 基于改进SIMP法的连续体结构拓扑优化方法研究[J]. 机电工程, 2021, 38(4): 428-433.
LI Q H, LI H Y. Continuum structure topology optimization method based on improved SIMP method[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(4): 428-433.
刘秀莲, 胡胜海, 张满慧, 等. 杠杆式抽筒子的动态特性研究及拓扑优化设计[J]. 火力与指挥控制, 2017, 42(3): 117-121.
LIU X L, HU S H, ZHANG M H, et al. Dynamic characteristics and structural optimization design of level-type cartridge extractor[J]. Fire Control & Command Control, 2017, 42(3): 117-121.
张国锋, 徐雷, 王鑫, 等. 基于变密度法的连续体结构拓扑优化后处理方法研究[J]. 机械强度, 2022, 44(4): 845-851.
ZHANG G F, XU L, WANG X, et al. Research on post-processing method of continuum structure topology optimization based on variable density method[J]. Journal of Mechanical Strength, 2022, 44(4): 845-851.
杨秀鲁, 刘鲁宁, 王永安, 等. 基于ANSYS Workbench软件的圆锯片基体减振降噪设计[J]. 济南大学学报(自然科学版), 2020, 34(2): 163-168.
YANG X L, LIU L N, WANG Y A, et al. Vibration and noise reduction design of circular saw blade matrix based on ANSYS workbench software[J]. Journal of University of Jinan (Science and Technology), 2020, 34(2): 163-168.
邱爽, 周金宇. 基于MATLAB和ANSYS的协同优化设计及应用[J]. 机械设计, 2018, 35(9): 68-72.
QIU S, ZHOU J Y. Collaborative optimization design and application based on MATLAB and ANSYS[J]. Journal of Machine Design, 2018, 35(9): 68-72.
徐庆阳, 李爱群, 丁幼亮, 等. 基于模式搜索算法的结构被动控制系统参数优化研究[J]. 振动与冲击, 2013, 32(10): 175-180.
XU Q Y, LI A Q, DING Y L, et al. Parameter optimization of seismic reduction structure based on pattern search algorithm[J]. Journal of Vibration and Shock, 2013, 32(10): 175-180.
相关文章
相关作者
相关机构