Effect of Polydopamine-Modified Nano-Boron Carbide on Properties of Waterborne Polyurethane Coatings
- Vol. 36, Issue 3, Pages: 46-51(2022)
DOI: 10.12326/j.2096-9694.2021150
扫 描 看 全 文
1.Research Institute of Wood Industry,Chinese Academy of Forestry,Beijing 100091,China
2.College of Furniture and Industrial Design,Nanjing Forestry University,Nanjing 210037,Jiangsu,China
扫 描 看 全 文
孙英纯,吴燕.聚多巴胺改性纳米碳化硼对水性聚氨酯涂层性能的影响研究[J].木材科学与技术,2022,36(03):46-51.
SUN Ying-chun,WU Yan.Effect of Polydopamine-Modified Nano-Boron Carbide on Properties of Waterborne Polyurethane Coatings[J].Chinese Journal of Wood Science and Technology,2022,36(03):46-51.
通过多巴胺(DA)常温自聚合产生的聚多巴胺(PDA)对纳米碳化硼(B,4,C)进行改性,制备聚多巴胺改性纳米碳化硼(B,4,C-PDA),通过添加B,4,C-PDA对水性聚氨酯涂料进行改性,成功制备改性涂料。当B,4,C-PDA添加量为1%时,改性涂层的力学性能最佳,磨耗量最低为0.0058 g/100 r,较对照涂层降低了96.2%;此时改性涂层的耐磨性最好且附着力保持1级,硬度提升为2H;改性涂层的热失重质量保存率由4.20%提升为7.97%。聚多巴胺改性纳米碳化硼/水性聚氨酯涂层具有良好的力学性能和热稳定性。
Polydopamine (PDA) produced by self-polymerization of dopamine (DA) at room temperature was used to modify nano-boron carbide in order to produce polydopamine-modified nano-boron carbide (B,4,C-PDA) coatings. The waterborne polyurethane coating was successfully modified by adding B,4,C-PDA. When 1% of B,4,C-PDA content was added, the mechanical properties of the coating were best, and the abrasion was reduced by 96.2% to a minimum of 0.0058 g/100 r. At this condition, the modified coating had the best abrasion performance and level-1 adhesion property, as well as the hardness of 2H. The thermogravitic mass retention rate of the coating increased from 4.20% to 7.97%. It was proved that the composite waterborne polyurethane coating modified by boron carbide dispersion had good mechanical properties and thermal stability.
纳米碳化硼聚多巴胺耐磨性水性聚氨酯涂料
nano boron carbidepolydopamineabrasion performancewaterborne polyurethane coating
李坚, 甘文涛, 王立娟. 木材仿生智能材料研究进展[J]. 木材科学与技术, 2021, 35(4): 1-14.
LI J, GAN W T, WANG L J. Research progress on wood biomimetic intelligent materials[J]. Chinese Journal of Wood Science and Technology, 2021, 35(4): 1-14.
刘惠祥. 功能化六方氮化硼改性水性聚氨酯复合乳液及其性能研究[D]. 厦门: 厦门大学, 2019.
丁晓丹. 纳米SiO2改性水性聚氨酯的制备及性能研究[D]. 长春: 长春工业大学, 2020.
程俊, 陈刚, 汤紫俊, 等. 纳米二氧化钛/石墨烯改性水性聚氨酯抗菌涂料的制备与评价[J]. 涂料工业, 2019, 49(9): 35-40.
CHENG J, CHEN G, TANG Z J, et al. Preparation and evaluation of nano-TiO2/rGO modified anti-bacterial waterborne polyurethane coatings[J]. Paint & Coatings Industry, 2019, 49(9): 35-40.
何蔼. 电场诱导聚多巴胺/聚电解质定向共沉积及其功能化应用[D]. 杭州: 浙江大学, 2017.
蒋金泓. 基于多巴胺自聚—组装行为的聚合物分离膜表面修饰与性能研究[D]. 杭州: 浙江大学, 2014.
Rehman M A U, Munawar M A, Schubert D W, et al. Electrophoretic deposition of chitosan/gelatin/bioactive glass composite coatings on 316L stainless steel: a design of experiment study[J]. Surface and Coatings Technology, 2019, 358: 976-986.
Ghadimi A, Metselaar I H. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid[J]. Experimental Thermal and Fluid Science, 2013, 51: 1-9.
Kumar P, Bohidar H B. Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361(1/2/3): 13-24.
ZHANG S W, ZHANG D D, LI Z, et al. Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites[J]. Journal of Coatings Technology and Research, 2018, 15(6): 1333-1341.
XIA Y Q, HE Y, CHEN C L, et al. Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating[J]. Reactive and Functional Polymers, 2020, DOI: 10.1016/j.reactfunctpolymhttp://dx.doi.org/10.1016/j.reactfunctpolym.
YUAN Z, TAO B L, HE Y, et al. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation[J]. Biomaterials, 2019, DOI:10.1016/j.biomaterialshttp://dx.doi.org/10.1016/j.biomaterials.
朱建康, 王树立, 饶永超, 等. 多巴胺改性氧化石墨烯-TiO2纳米复合材料在水性环树脂中物理性能和腐蚀动力学研究[J]. 涂料工业, 2019, 49(8): 1-9, 16.
ZHU J K, WANG S L, RAO Y C, et al. Study on physical properties and corrosion kinetics of dopamine modified GO-TiO2 nanocomposites in waterborne epoxy resin[J]. Paint & Coatings Industry, 2019, 49(8): 1-9, 16.
蔡世逸, 林海鹏, 吴崇福, 等. 光聚合多巴胺仿生耐腐蚀抗老化涂层材料[J]. 广东化工, 2016, 43(16): 8-9, 18.
CAI S Y, LIN H P, WU C F, et al. The photo-initiation bionic corrosion-resistant anti-aging coating-material[J]. Guangdong Chemical Industry, 2016, 43(16): 8-9, 18.
付川. 负载金纳米粒子聚多巴胺涂层修饰的氧化石墨烯复合材料在骨缺损修复中的应用[D]. 吉林:吉林大学, 2021.
廖木荣. 聚多巴胺粘附木材超疏水表面仿生构建及性能表征[D]. 南宁:广西大学, 2019.
易泽德, 廖木荣, 康帆, 等. 甲基硅酸钠刻蚀聚多巴胺涂层构建超疏水木材及表征[J]. 复合材料学报, 2021, 38(9): 3027-3035.
YI Z D, LIAO M R, KANG F, et al. Fabrication and characterization of superhydrophobic wood by etching polydopamine coating with sodium methylsilicate. Acta Materiae Compositae Sinica, 2021, 38(9): 3027-3035.
相关文章
相关作者
相关机构