Finite Element Analysis on Extrusion Flow Field of Wood Plastic Composites
- Vol. 36, Issue 2, Pages: 71-80(2022)
DOI: 10.12326/j.2096-9694.2021085
扫 描 看 全 文
1.Key Laboratory for Biobased Materials and Energy of Ministry of Education,South China Agricultural University, Guangzhou 510642,Guangdong,China
2.Guangdong Laboratory of Lingnan Modern Agriculture,Guangzhou 510642,Guangdong,China
3.National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002,Fujian,China
扫 描 看 全 文
吕兴聪,郝笑龙,李昀等.木塑复合材料挤出成型流场的有限元分析[J].木材科学与技术,2022,36(02):71-80.
LYU Xing-cong,HAO Xiao-long,LI Yun,et al.Finite Element Analysis on Extrusion Flow Field of Wood Plastic Composites[J].Chinese Journal of Wood Science and Technology,2022,36(02):71-80.
在不同螺杆转速和模具温度条件下制备木塑复合材料,采用旋转流变仪得到不同加工工艺流变参数。利用Polyflow有限元分析软件模拟分析挤出工艺对挤出成型流场的影响。结果表明,随着螺杆转速的增加,压力场波动变化并明显提高,挤出口模的速度场和剪切速率场均明显提高,黏度场逐渐降低,螺杆转速为20 r/min时压力相对平稳;模具温度对速度场和剪切速率场影响较小,但模具温度越高压力场越小。挤出成型流场的有限元分析结果与试验结果基本吻合。
Wood plastic composites were manufactured at different screw speeds and mold temperatures. The rheological parameters of different processing steps were obtained by the rotating rheometer. The influence of extrusion process on the flow field was simulated and analyzed by Polyflow finite element analysis software. The results showed that with the increase of the screw speed, the pressure field fluctuated and increased significantly, and velocity and shear rate field of the die increased significantly. The viscosity field decreased gradually. The pressure is relatively stable when the screw speed is 20 r/min. The pressure field decreased when the mold temperature increased. However, the mold temperature had a little effect on the velocity and the shear rate field. The finite element analysis findings were basically consistent with the experimental results.
木塑复合材料成型工艺模具流场螺杆转速模具温度
wood-plastic compositemolding processdie flow fieldscrew speeddie temperature
Elamin M A M, Li S X, Osman Z A, et al. Preparation and characterization of wood-plastic composite by utilizing a hybrid compatibilizer system[J]. Industrial Crops and Products, 2020, 154: 112659.
Feng Y H, Yuan Z X, Sun H, et al. Toughening and reinforcing wood flour/polypropylene composites with high molecular weight polyethylene under elongation flow[J]. Composites Science and Technology, 2020, 200(108395).
梅生启,唐广,杨斌,等. 基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析[J]. 复合材料学报, 2020, 37(8): 2055-2064.
MEI S Q, TANG G, YANG B, et al. Creep/recovery behavior analysis of wood-plastic composites based on fractional order viscoelastic model[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2055-2064.
Yatigala N S, Bajwa D S, Bajwa S G. Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 315-325.
Adhikary K B, Park C B, Islam M R, et al. Effects of lubricant content on extrusion processing and mechanical properties of wood flour-high-density polyethylene composites[J]. Journal of Thermoplastic Composite Materials, 2011, 24(2): 155-171.
Godard F, Vincent M, Agassant J F, et al. Rheological behavior and mechanical properties of sawdust/polyethylene composites[J]. Journal of Applied Polymer Science, 2009, 112(4): 2559-2566.
LI H J, Law S, Sain M. Process rheology and mechanical property correlationship of wood flour-polypropylene composites[J]. Journal of Reinforced Plastics and Composites, 2004, 23(11): 1153-1158.
徐爱玲,宋永明. 纳米蒙脱土对木粉/聚丙烯复合材料发泡性能的影响[J]. 复合材料学报, 2021, 38(8): 2497-2504.
XU A L, SONG Y M. Effect of nano-montmorillonite on foaming properties of wood flour/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2497-2504.
Li T Q, Wolcott M P. Rheology of wood plastics melt, part 2: Effects of lubricating systems in HDPE/maple composites[J]. Polymer Engineering and Science, 2006, 46(4): 464-473.
Laufer N, Hansmann H, Koch M. Rheological Rheological characterisation of the flow behaviour of wood plastic composites in consideration of different volume fractions of wood[J]. Journal of Physics: Conference Series, 2017, 790: 012017.
张敏,孙胜,贾玉玺. 基于有限元方法的聚合物共挤出界面形成过程数值研究[J]. 应用基础与工程科学学报, 2008,16(5): 712-718.
ZHANG M, SUN S, JIA Y X. Numerical analysis of the polymer coextrusion interface based on the finite element method[J]. Journal of Basic Science and Engineering, 2008, 16(5): 712-718.
TANG D G, Marchesini F H, D’hooge D R, et al. Isothermal flow of neat polypropylene through a slit Die and its Die swell: Bridging experiments and 3D numerical simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 266: 33-45.
ZHANG J J, Rizvi G M, Park C B, et al. Study on cell nucleation behavior of HDPE–wood composites/supercritical CO2 solution based on rheological properties[J]. Journal of Materials Science, 46(11): 3777-3784.
范涛,陈作炳,杜佳佳,等. 螺槽深度对PVC木塑单螺杆挤出机熔融段熔融过程的影响[J]. 武汉: 武汉理工大学学报, 2015, 37(1): 125-130.
FAN T, CHEN Z B, DU J J, et al. Effects of spiral groove depth on PVC wood-plastics single-screw extruder melting section melting process[J]. Journal of Wuhan University of Technology, 2015, 37(1): 125-130.
Yilmaz O, Gunes H, Kirkkopru K. Optimization of a profile extrusion Die for flow balance[J]. Fibers and Polymers, 2014, 15(4): 753-761.
SUN D P, ZHU X Z, GAO M G. 3D numerical simulation of reactive extrusion processes for preparing PP/TiO2 nanocomposites in a corotating twin screw extruder[J]. Materials, 2019, 12(4): 671.
WEN J S, YANG M K, FAN D J. Numerical simulation of energy consumption in the melt conveying section of eccentric rotor extruders[J]. Advances in Polymer Technology, 2018, 37(8): 3335-3347.
ZHANG C S, YANG S, ZHANG Q Y, et al. Automatic optimization design of a feeder extrusion Die with response surface methodology and mesh deformation technique[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9/10/11/12): 3181-3193.
范涛. PVC木塑单螺杆挤出成型过程与试验研究[D]. 武汉: 武汉理工大学, 2017.
刘亚秋,李明,孙垚. 木塑挤出成型特性分析与影响因素数值仿真研究[J]. 安徽农业科学, 2014, 42(3): 823-827.
LIU Y Q, LI M, SUN Y. Numerical simulation on characteristic and influencing factors of wood plastic composite melt in extruder[J]. Journal of Anhui Agricultural Sciences, 2014, 42(3): 823-827.
LI T Q, Wolcott M P. Rheology of HDPE-wood composites. I. Steady state shear and extensional flow[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(3): 303-311.
孙秀伟. 聚合物熔体流变特性试验研究[D]. 大连: 大连理工大学, 2008.
王鹏. 高填充木塑复合材料流变行为与结晶性质研究[D]. 上海: 上海交通大学, 2011.
Mompean G, Thais L, Tomé M F, et al. Numerical prediction of three-dimensional time-dependent viscoelastic extrudate swell using differential and algebraic models[J]. Computers & Fluids, 2011, 44(1): 68-78.
HAN C D. What is the role of “pressure” in the use of capillary and slit flows to determine the shear‐rate dependent viscosity of a viscoelastic fluid[J]. Polymer Engineering & Science, 2008, 48(6): 1126-1140.
钱欣, 许王定, 金杨福. POLYFLOW基础及其在塑料加工中的应用[M]. 北京: 化学工业出版社, 2010.
任珊珊. 精密共挤出机及木塑异型材包覆共挤机头的设计与研究[D]. 西安: 陕西科技大学, 2019.
付丽. 超高分子量聚乙烯熔融挤出初生丝过程的模拟与实验研究[D]. 北京: 北京化工大学, 2019.
Yarusso B J. Exit and entrance flows of non-Newtonian fluids in parallel slits[J]. Journal of Non-Newtonian Fluid Mechanics, 1991, 40(1): 103-117.
李敏. 含能材料单螺杆压伸过程仿真模拟研究[D]. 北京: 北京化工大学, 2020.
相关作者
相关机构