Structure and Properties of Microwave Puffed Mongolian Scotch Pine Wood Filled with Epoxy Resin
- Vol. 36, Issue 2, Pages: 48-53(2022)
DOI: 10.12326/j.2096-9694.2021077
扫 描 看 全 文
1.Research Institute of Wood Industry,Chinese Academy of Forestry,Beijing 100091,China
扫 描 看 全 文
吕少一,傅峰,李善明等.环氧树脂填充微波膨化樟子松木材的结构及性能[J].木材科学与技术,2022,36(02):48-53.
LYU Shao-yi,FU Feng,LI Shan-ming,et al.Structure and Properties of Microwave Puffed Mongolian Scotch Pine Wood Filled with Epoxy Resin[J].Chinese Journal of Wood Science and Technology,2022,36(02):48-53.
采用真空浸渍法制备环氧树脂填充微波膨化樟子松木材,探讨环氧树脂填充前后微波膨化樟子松的微观形貌、化学结构、热稳定性和力学性能的变化规律。结果表明:环氧树脂主要填充在微波膨化樟子松的宏观裂缝及其相邻的若干个细胞腔内,少量填充在晚材细胞腔内,并在微波膨化樟子松内部形成部分连通的高分子树脂骨架结构;微波膨化樟子松经环氧树脂填充后,体积增大1.61%,密度增加97.37%,热稳定性提高(,T,-5%,分解温度提高了23.18 ℃,最大分解速率提高了11.08 ℃);环氧树脂填充微波膨化樟子松的硬度、抗压强度、弹性模量和静曲强度等力学性能指标,较樟子松素材分别提高了34.38%、48.74%、12.96%和11.38%,环氧树脂填充微波膨化樟子松同时具有良好的纹理。本研究为人工林木材的整体化、实木化应用提供了新思路。
The microwave puffed Mongolian scotch pine samples were impregnated with the epoxy resin in a vacuum environment. The changes of the morphology, chemical structure, thermal stability, and mechanical properties of the samples before and after the filling were investigated. The results showed that the resin was mainly filled in the macroscopic cracks and several cell lumens on both sides of the puffed wood. A small amount of resin was filled in the cell cavities of the late wood. A partially connected polymer resin skeleton structure was formed in the puffed wood. After being filled with the epoxy resin, the volume of microwave puffed samples increased by 1.61%; the density increased by 97.37%; the thermal stability was improved; T,-5%, decomposition temperature increased by 23.18 ℃; the maximum decomposition rate increased by 11.08 ℃; the hardness, compressive strength, elastic modulus, and the static intensity increased by 34.38%, 48.74%, 12.96%, and 11.38% higher than control sample, respectively. Microwave puffed Mongolian scotch pine wood filled with epoxy resin also had good aesthetic textures. This study provides a new idea for the integrated application of the plantation wood.
樟子松微波膨化环氧树脂真空浸渍填充
Mongolian scotch pinemicrowave puffedepoxy resinvacuum impregnationfilled
兰馨. 林产工业谋创新 布局生态产业链[N]. 中国贸易报, 2019-12-12(8).
徐恩光, 林兰英, 李善明, 等. 木材微波处理技术与应用进展[J].木材工业, 2020,34(1):20-24, 29.
XU E G, LIN L Y, LI S M, et al. Wood microwave treatment technology and its applications[J]. China Wood Industry, 2020, 34(1):20-24, 29.
Vinden P, Torgovnikov G, Hann J. Microwave modification of Radiata pine railway sleepers for preservative treatment[J]. European Journal of Wood and Wood Products, 2011, 69(2): 271-279.
朱长庆, 张建, 庄期应, 等. 工艺条件对杉木微波处理后渗透性能影响的研究[J]. 林业机械与木工设备, 2009, 37(11): 18-21, 25.
ZHU C Q, ZHANG J, ZHUANG Q Y, et al. Study on the effect of technological conditions on permeability of microwave treated fir[J]. Forestry Machinery & Woodworking Equipment, 2009, 37(11): 18-21, 25.
李晓东. 微波超声波技术在阻燃剂浸渍处理木材中的应用[J]. 化工进展, 2005, 24(12):1422-1425.
LI X D. Introducing microwave and ultrasonic technology to soaking wood with fire retardants[J]. Chemical Industry and Engineering Progress, 2005, 24(12):1422-1425.
常佳, 王金林, 王清文,等.微波处理对木材染色性能的影响[J]. 林业科学, 2008, 44(6):109-112.
CHANG J, WANG J L, WANG Q W, et al. Effects of wood dyeing with microwave processing[J]. Scientia Silvae Sinicae, 2008, 44(6):109-112.
胡嘉裕, 刘元, 喻胜飞, 等.微波预处理对杨木活性染料染色效果的影响[J]. 中南林业科技大学学报, 2015, 35(12):123-126.
HU J Y, LIU Y, YU S F, et al. Effects of microwave pretreatment on poplar veneer dyeing with reactive dyes[J]. Journal of Central South University of Forestry & Technology, 2015, 35(12):123-126.
CHAI Y, LIANG S Q, ZHOU Y D, et al. 3D microscale heat transfer model of the thermal properties of wood-metal functional composites based on the microstructure[J]. Materials (Basel, Switzerland), 2019, 12(17): 2709.
梁善庆, 柴媛, 傅峰. 一种导热系数可控的木基复合材料及其制备方法: CN108656272A[P]. 2018-10-16.
Oloyede A, Groombridge P. The influence of microwave heating on the mechanical properties of wood[J]. Journal of Materials Processing Technology, 2000, 100(1/2/3): 67-73.
周志芳, 江涛, 王清文. 高强度微波处理对落叶松木材力学性质的影响[J]. 东北林业大学学报, 2007, 35(2): 7-8, 25.
ZHOU Z F, JIANG T, WANG Q W. Influence of intensive microwave treatment on mechanical properties of larch wood[J]. Journal of Northeast Forestry University, 2007, 35(2): 7-8, 25.
Torgovnikov G, Vinden P. High-intensity microwave wood modification for increasing permeability[J]. Forest Products Journal, 2009, 59(4): 84-92.
格里戈里•托尔格夫尼科夫, 彼得•文登. 变性木制品及其加工方法: CN02806929.3[P]. 2004-05-19.
林兰英, 傅峰, 周永东, 等. 微波处理重组材及其制备方法: CN105965638A[P]. 2016-09-28.
李贤军. 一种高品质杨木复合材料的制造方法: CN102229170A[P]. 2011-11-02.
吕少一, 傅峰, 李善明, 等. 一种树脂填充微波膨化木材的制备方法: CN111086077B[P]. 2021-10-22.
傅峰, 林兰英, 周永东, 等. 一种木材的膨化方法及其制备的膨化木材: CN111086077B[P]. 2021-10-22.
熊令明, 邢雪峰, 林兰英, 等. 高场强微波处理对樟子松木材宏观裂纹的影响[J]. 木材工业, 2020, 34(6):1-4.
XIONG L M, XING X F, LIN L Y, et al. Effects of high-field-intensity microwave treatment on macroscopic cracks in Mongolian Scotch Pine[J]. China Wood Industry, 2020, 34(6):1-4.
[美]R.E. Collins著, 陈钟祥,吴望一译. 流体通过多孔材料的流动[M]. 北京:石油工业出版社,1984.
González M G, Cabanelas J C, Baselga J. Applications of FTIR on epoxy resins-identification, monitoring the curing process, phase separation and water uptake[J]. Infrared Spectroscopy-Materials Science, Engineering and Technology, 2012, 2: 261-284.
李善明, 邢雪峰, 林兰英, 等. 高能微波预处理辐射松木材的弯曲性能研究[J]. 木材工业, 2020, 34(5):1-6.
LI S M, XING X F, LIN L Y, et al. Effect of high energy density microwave pretreatment on bendability of Radiata Pine(Pinus radiata) wood[J]. China Wood Industry, 2020, 34(5):1-6.
徐恩光. 樟子松微波膨化木性能及其树脂强化处理研究[D]. 北京: 中国林业科学研究院, 2020.
相关作者
相关机构