Effect of Delignification on the Packaging Efficiency and Thermal Properties of Wood-based Composite Phase Change Heat Storage Materials
- Vol. 36, Issue 2, Pages: 42-47(2022)
DOI: 10.12326/j.2096-9694.2021074
扫 描 看 全 文
1.Beijing Forestry University
2.Ministry of Education Key Laboratory of Wooden Materials Science and Application
3.Key Laboratory of Beijing for Wood Science and Engineering,Beijing 100083,China
扫 描 看 全 文
何林韩,凌凯莉,刘士瑞等.脱木素对木基复合相变储热材料封装效率及热性能的影响[J].木材科学与技术,2022,36(02):42-47.
HE Lin-han,LING Kai-li,LIU Shi-rui,et al.Effect of Delignification on the Packaging Efficiency and Thermal Properties of Wood-based Composite Phase Change Heat Storage Materials[J].Chinese Journal of Wood Science and Technology,2022,36(02):42-47.
为探讨脱木素对木粉孔结构及对相变材料封装效率的影响及作用关系,以轻木木粉为封装基体,将木粉脱木质素处理后,通过真空浸渍法将聚乙二醇(PEG)封装于木粉中制备了一种复合相变储热材料,通过场发射扫描显微镜(SEM)、比表面积和孔径分析仪(BET)、傅里叶红外光谱测试(FTIR)、差示扫描量热测试(DSC)分析了脱除木质素对其孔径结构及封装效率的影响。结果表明,脱木素后木粉介孔增多,孔结构得到改善,相变材料的封装效率提升至75.1%。熔融温度和潜热分别为53.3 ℃和137.8 J/g,且在热循环实验后表现出良好的热可靠性。
In order to investigate the effect of delignification on the pore structure of balsa (,Ochroma pyramidale,) wood flour and the packaging efficiency of phase change materials, a composite phase change heat storage material was prepared by encapsulating polyethylene glycol in delignified balsa wood flour using the vacuum impregnation method. The effects of delignification on the pore structure and packaging efficiency were analyzed by SEM, BET, FTIR and DSC, respectively. The results showed that the mesopores increased and the pore structure improved after delignification. The packaging efficiency of phase change heat storage materials increased to 75.1%. The melting temperature was 53.3 ℃ and the latent heat was 137.8 J/g. The phase change heat storage material showed a good thermal reliability after the thermal cycle experiment.
木基复合相变储热材料脱木素木粉封装效率聚乙二醇
wood based composite phase change heat storage materialdelignified wood flourpackaging efficiencypolyethylene glycol
纪旭阳, 金兆国, 梁福鑫. 相变材料在建筑节能中的应用[J]. 功能高分子学报, 2019, 32(5): 541-549.
JI X Y, JIN Z G, LIANG F X. Application of phase change materials in building energy conservation[J]. Journal of Functional Polymers, 2019, 32(5): 541-549.
SU W G, Darkwa J, Kokogiannakis G. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373-391.
何丽红, 李文虎, 李菁若, 等. 聚乙二醇复合相变材料的研究进展[J]. 材料导报, 2014, 28(1): 71-74.
HE L H, LI W H, LI J R, et al. Research progress of polyethylene glycol composite phase change materials[J]. Materials Review, 2014, 28(1): 71-74.
王文楷, 董震, 赖艳华, 等. 相变储能材料的研究与应用进展[J]. 制冷与空调(四川), 2020, 34(1): 91-103.
WANG W K, DONG Z, LAI Y H, et al. The research and application progress of phase change energy storage materials[J]. Refrigeration & Air Conditioning, 2020, 34(1): 91-103.
杨磊, 姚远, 张冬冬, 等. 有机相变储能材料的研究进展[J]. 新能源进展, 2019, 7(5): 464-472.
YANG L, YAO Y, ZHANG D D, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2019, 7(5): 464-472.
陶文, 张毅, 孔祥法, 等. 无机水合盐相变材料过冷度抑制方法的研究进展[J]. 过程工程学报, 2020, 20(6): 619-627.
TAO W, ZHANG Y, KONG X F, et al. Research progress on supercooling degree suppression of inorganic hydrated salt phase change materials[J]. The Chinese Journal of Process Engineering, 2020, 20(6): 619-627.
Donmez Cavdar A, Mengeloğlu F, Karakus K. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites[J]. Measurement, 2015, 60: 6-12.
MA L Y, GUO C G, OU R X, et al. Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material[J]. Energy & Fuels, 2018, 32(4): 5453-5461.
FU Q L, Ansari F, ZHOU Q, et al. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures[J]. ACS Nano, 2018, 12(3): 2222-2230.
ZHU Z D, FU S Y, Lucia L A. A fiber-aligned thermal-managed wood-based superhydrophobic aerogel for efficient oil recovery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16428-16439.
YANG H Y, WANG Y Z, YU Q Q, et al. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage[J]. Applied Energy, 2018, 212: 455-464.
YANG H Y, CHAO W X, DI X, et al. Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage[J]. Energy Conversion and Management, 2019, 200: 112029.
YANG H Y, WANG S Y, WANG X, et al. Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage[J]. Applied Energy, 2020, 261: 114481.
Montanari C, Li Y Y, Chen H, et al. Transparent wood for thermal energy storage and reversible optical transmittance[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20465-20472.
PAN X Y, ZHANG N, YUAN Y P, et al. Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage[J]. Solar Energy, 2021, 230: 269-277.
LI Y Y, FU Q L, YU S, et al. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance[J]. Biomacromolecules, 2016, 17(4): 1358-1364..
冉茂亚, 李有贵, 秦磊, 等. 云南油杉瘿瘤材构造与化学成分分析及应用[J]. 木材科学与技术, 2021, 35(3): 38-44.
RAN M Y, LI Y G, QIN L, et al. Microstructural characterization and chemical composition and application of burl wood of Keteleeria evelyniana[J]. Chinese Journal of Wood Science and Technology, 2021, 35(3): 38-44.
GUO X F, LIU C, LI N, et al. Electrothermal conversion phase change composites: the case of polyethylene glycol infiltrated graphene oxide/carbon nanotube networks[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15697-15702.
席国喜, 邢新艳, 路宽, 等. 聚乙二醇/埃洛石复合相变材料的制备及其性能研究[J]. 化工新型材料, 2011, 39(10): 54-56, 81.
XI G X, XING X Y, LU K, et al. Preparation and performance researching of polyethylene glycol/halloysite composite phase change materials[J]. New Chemical Materials, 2011, 39(10): 54-56, 81.
Karaman S, Karaipekli A, Sarı A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1647-1653.
康丁, 西鹏, 段玉情, 等. 聚乙二醇/膨胀石墨相变储能复合材料的研究[J]. 化工新型材料, 2011, 39(3): 106-108, 119.
KANG D, XI P, DUAN Y Q, et al. Study on polyethylene glycol/expanded graphite phase change composites for thermal storage[J]. New Chemical Materials, 2011, 39(3): 106-108, 119.
许子龙, 高颖, 李晓旭, 等. 聚乙二醇/二氧化硅复合定形相变储能材料的制备与研究[J]. 当代化工, 2021, 50(1): 6-9, 13.
XU Z L, GAO Y, LI X X, et al. Preparation and research of polyethylene glycol/silica composite shape-stabilized phase change energy storage materials[J]. Contemporary Chemical Industry, 2021, 50(1): 6-9, 13.
ZHANG D, CHEN M Z, LIU Q T, et al. Preparation and thermal properties of molecular-bridged expanded graphite/polyethylene glycol composite phase change materials for building energy conservation[J]. Materials, 2018, 11(5): 818.
相关文章
相关作者
相关机构