Research Review of Photo Discoloration Mechanism and Prevention for Thermally Modified Wood
- Vol. 36, Issue 2, Pages: 11-17(2022)
DOI: 10.12326/j.2096-9694.2021046
扫 描 看 全 文
1.College of Materials Science and Engineering,Nanjing Forestry University,Nanjing 210037,Jiangsu,China
2.Research Institute of Wood Industry,Chinese Academy of Forestry,Beijing 100091,China
扫 描 看 全 文
陈凯文,彭辉,蒋佳荔等.热处理木材光变色机理及防治方法的研究进展[J].木材科学与技术,2022,36(02):11-17.
CHEN Kai-wen,PENG Hui,JIANG Jia-li,et al.Research Review of Photo Discoloration Mechanism and Prevention for Thermally Modified Wood[J].Chinese Journal of Wood Science and Technology,2022,36(02):11-17.
热处理木材在户外应用过程中受光辐射易发生变色现象,影响美观。深入研究热处理木材的光变色机理及防治方法,对其靶向改性及服役时间延长具有重要作用。本文归纳光辐射后热处理木材的颜色变化规律,总结化学组分在光辐射过程中的降解反应。从反射作用、紫外线吸收、自由基吸收/破坏三个方面综述光变色的防治方法,分析亟待解决的问题,以增强热处理木材的颜色稳定性,促进其可持续利用。
Due to the effects of oxygen, water, light, and other environmental factors, the thermally modified wood is prone to photo discoloration. The photo discoloration significantly affects the appearance of thermally modified wood. Studies on the mechanism of photo discoloration and the prevention methods play an important role in the targeted modification and the extension of the service life. In this paper, the color changes of thermally modified wood during the aging process were summarized, as well as the degradation reactions of chemical components. In addition, the prevention methods of photo discoloration were reviewed from three aspects: reflection, ultraviolet absorption, and free radical absorption/destruction. Finally, prominent problems were analyzed and suggestions were proposed to provide reference for improving the sustainable application of thermally modified wood.
热处理木材光变色材色降解机理防治方法
thermally modified woodphoto discolorationwood colordegradation mechanismprevention methods
顾炼百, 丁涛, 江宁. 木材热处理研究及产业化进展[J]. 林业工程学报, 2019, 4(4): 1-11.
GU L B, DING T, JIANG N. Development of wood heat treatment research and industrialization[J]. Journal of Forestry Engineering, 2019, 4(4): 1-11.
HERRERA R, MUSZYŃSKA M, KRYSTOFIAK T, et al. Comparative evaluation of different thermally modified wood samples finishing with UV-curable and waterborne coatings[J]. Applied Surface Science, 2015, 357: 1444-1453.
SRINIVAS K, PANDEY K K. Photodegradation of thermally modified wood[J]. Journal of Photochemistry and Photobiology B: Biology, 2012, 117: 140-145.
张镜元, 达妮娅, 张宝元, 等. 植物油蜡涂饰热改性落叶松的色度学差异性分析[J]. 林业工程学报, 2020, 5(6): 64-75.
ZHANG J Y, CHESNOKOVA Tatiana, ZHANG B Y, et al. Chromatic variability of larch wood impacted by high-temperature thermal treatment and oil-wax coating[J]. Journal of Forestry Engineering, 2020, 5(6): 64-75.
TEMIZ A, TERZIEV N, JACOBSEN B, et al. Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood[J]. Journal of Applied Polymer Science, 2006, 102(5): 4506-4513.
TOLVAJ L, NEMETH R, PASZTORY Z, et al. Colour stability of thermally modified wood during short-term photodegradation[J]. BioResources, 2014, 9(4): 6644-6651.
YILDIZ S, UMIT C, TOMAK E D. The effects of natural weathering on the properties of heat-treated alder wood[J]. Bioresources. 2011, 6(3): 2504-2521.
TOLVAJ L, FAIX O. Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements: 1. effect of UV light[J]. Holzforschung, 1995, 49(5): 397-404.
YILDIZ S, UMIT C, OZGENC O. Weathering resistance of oriental spruce wood treated with different protection processes[J]. Journal of Materials in Civil Engineering, 2016, 28(8): 04016054.
HERRERA R, ARRESE A, Pedro L. de Hoyos-Martinez,et al. Evolution of thermally modified wood properties exposed to natural and artificial weathering and its potential as an element for façades systems[J]. Construction and Building Materials, 2018, 172: 233-242.
SHEN H Y, XU J Q, CAO J Z, et al. Evolution of extractive composition in thermally modified Scots pine during artificial weathering[J]. Holzforschung, 2019, 73(8): 747-755.
NGUYEN T T, NGUYEN T H, JI X D, et al. Prediction of the color change of heat-treated wood during artificial weathering by artificial neural network[J]. European Journal of Wood and Wood Products, 2019, 77(6): 1107-1116.
AYADI N, LEJEUNE F, CHARRIER F, et al. Color stability of heat-treated wood during artificial weathering[J]. Holz Als Roh- Und Werkstoff, 2003, 61(3): 221-226.
Čabalová I, Kačík F, Lagaňa R, et al. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood[J]. BioResources, 2017, 13(1): 157-170.
Kučerová V, Lagaňa R, Výbohová E, et al. The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood[J]. BioResources, 2016, 11(4): 9079-9094.
江京辉, 吕建雄. 高温热处理对木材颜色变化影响综述[J]. 世界林业研究, 2012, 25(1): 40-43.
JIANG J H, LV J X. Review on color change of heat treated wood at high temperature[J]. World Forestry Research, 2012, 25(1): 40-43.
TOMAK E D, USTAOMER D, ERMEYDAN M A, et al. An investigation of surface properties of thermally modified wood during natural weathering for 48 months[J]. Measurement, 2018, 127: 187-197.
MITSUI K, MURATA A, TOLVAJ L. Changes in the properties of light-irradiated wood with heat treatment: part 3. Monitoring by DRIFT spectroscopy[J]. Holz Als Roh-Und Werkstoff, 2004, 62(3): 164-168.
XING D, WANG S Q, LI J. Effect of artificial weathering on the properties of industrial-scale thermally modified wood[J]. BioResources, 2015, 10(4): 8238-8252.
HUANG X N, KOCAEFE D, KOCAEFE Y, et al. Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation[J]. Polymer Degradation and Stability, 2012, 97(7): 1197-1214.
YILDIZ S, TOMAK E D, YILDIZ U C, et al. Effect of artificial weathering on the properties of heat treated wood[J]. Polymer Degradation and Stability, 2013, 98(8): 1419-1427.
NEMETH R, TOLVAJ L, BAK M, et al. Colour stability of oil-heat treated black locust and poplar wood during short-term UV radiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329: 287-292.
DEKA M, HUMAR M, REP G, et al. Effects of UV light irradiation on colour stability of thermally modified, copper ethanolamine treated and non-modified wood: EPR and DRIFT spectroscopic studies[J]. Wood Science and Technology, 2008, 42(1): 5-20.
CUI X J, MATSUMURA J. Wood surface changes of heat-treated Cunninghamia lanceolate following natural weathering[J]. Forests, 2019, 10(9): 791.
CHENG S C, HUANG A M, WANG S N, et al. Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood[J]. BioResources, 2016, 11(2): 4006-4016.
Butylina S, Hyvärinen M, Kärki T. Weathering of wood-polypropylene composites containing pigments[J]. European Journal of Wood and Wood Products, 2012, 70(5): 719-726.
KOLLMANN F, FENGEL D. Changes in the chemical composition of wood by thermal treatment[J]. Änderungen Der Chemischen Zusammensetzung Von Holz, 1965, 23(12): 461-468.
HUANG X N, KOCAEFE D, KOCAEFE Y, et al. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering[J]. Applied Surface Science, 2013, 264: 117-127.
BOURGOIS J, GUYONNET R. Characterization and analysis of torrefied wood[J]. Wood Science and Technology, 1988, 22(2): 143-155.
ANDERSON E L, PAWLAK Z, OWEN N L, et al. Infrared studies of wood weathering. part I: softwoods[J]. Applied Spectroscopy, 1991, 45(4): 641-647.
秦莉, 于文吉. 木材光老化的研究进展[J]. 木材工业, 2009, 23(4): 33-36.
QIN L, YU W J. Review of research and development of photo-induced aging of wood[J]. China Wood Industry, 2009, 23(4): 33-36.
SALCA E A, KOBORI H, INAGAKI T, et al. Effect of heat treatment on colour changes of black alder and beech veneers[J]. Journal of Wood Science, 2016, 62(4): 297-304.
MITSUI K. Changes in the properties of light-irradiated wood with heat treatment[J]. Holz Als Roh- Und Werkstoff, 2004, 62(1): 23-30.
ANDERSON E L, PAWLAK Z, OWEN N L, et al. Infrared studies of wood weathering. Part II: hardwoods[J]. Applied Spectroscopy, 1991, 45(4): 648-652.
GEORGE B, SUTTIE E, MERLIN A, et al. Photodegradation and photostabilisation of wood - the state of the art[J]. Polymer Degradation and Stability, 2005, 88(2): 268-274.
KRINGSTAD K P, LIN S Y. Mechanism in the yellowing of high-yield pulps by light. structure and reactivity of free radical intermediates in the photodegradation of lignin[J]. Tappi, 1970, 53(12): 2296.
Gierer J. Photodegradation of lignin[J]. Pigment & Resin Technology, 1972, 40(3): 169-174.
SCAIANO J C, NETTO-FERREIRA J C, WINTGENS V. Fragmentation of ketyl radicals derived from α-phenoxyacetophenone: an important mode of decay for lignin-related radicals? [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 59(2): 265-268.
NUOPPONEN M, WIKBERG H, VUORINEN T, et al. Heat-treated softwood exposed to weathering[J]. Journal of Applied Polymer Science, 2004, 91(4): 2128-2134.
González-Peña M M, Hale M D C. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: colour evolution and colour changes[J]. Holzforschung, 2009, 63(4): 385-393.
Müller U, Rätzsch M, Schwanninger M, et al. Yellowing and IR-changes of spruce wood as result of UV-irradiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2003, 69(2): 97-105.
NZOKOU P, KAMDEM D P. Influence of wood extractives on the photo-discoloration of wood surfaces exposed to artificial weathering[J]. Color Research & Application, 2006, 31(5): 425-434.
KAMDEM D P, PIZZI A, TRIBOULOT M C. Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation[J]. Holz Als Roh- Und Werkstoff, 2000, 58(4): 253-257.
WALLENHORST L, GURĂU L, GELLERICH A, et al. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure[J]. Applied Surface Science, 2018, 434: 1183-1192.
SALLA J, PANDEY K K, SRINIVAS K. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles[J]. Polymer Degradation and Stability, 2012, 97(4): 592-596.
Miklečić J, Turkulin H, Jirouš-Rajković V. Weathering performance of surface of thermally modified wood finished with nanoparticles-modified waterborne polyacrylate coatings[J]. Applied Surface Science, 2017, 408: 103-109.
Jirouš-Rajković V, Miklečić J. New insights into improving the colour stability of thermally modified wood exposed to UV-light[M]. Grbac I, 2012: 41-47.
Pánek M, Hýsek Š, Dvořák O, et al. Durability of the exterior transparent coatings on nano-photostabilized English oak wood and possibility of its prediction before artificial accelerated weathering[J]. Nanomaterials (Basel, Switzerland), 2019, 9(11): 1568.
GUO H Z, FUCHS P, CABANE E, et al. UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures[J]. Holzforschung, 2016, 70(8): 699-708.
XING D, ZHANG Y, HU J P, et al. Highly hydrophobic and self-cleaning heat-treated Larix spp. prepared by TiO2 and ZnO particles onto wood surface[J]. Coatings, 2020, 10(10): 986.
Mahltig B, Arnold M, Löthman P. Surface properties of Sol–gel treated thermally modified wood[J]. Journal of Sol-Gel Science and Technology, 2010, 55(2): 221-227.
SHEN H Y, ZHANG S D, CAO J Z, et al. Improving anti-weathering performance of thermally modified wood by TiO2 Sol or/and paraffin emulsion[J]. Construction and Building Materials, 2018, 169: 372-378.
CHANG T C, CHANG H T, WU C L, et al. Influences of extractives on the photodegradation of wood[J]. Polymer Degradation and Stability, 2010, 95(4): 516-521.
SAHA S, KOCAEFE D, BOLUK Y, et al. Enhancing exterior durability of jack pine by photo-stabilization of acrylic polyurethane coating using bark extract. Part 1: effect of UV on color change and ATR-FT-IR analysis[J]. Progress in Organic Coatings, 2011, 70(4): 376-382.
ROSU D, TEACA C A, BODIRLAU R, et al. FTIR and color change of the modified wood as a result of artificial light irradiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2010, 99(3): 144-149.
WETHTHIMUNI M L, CAPSONI D, MALAGODI M, et al. Shellac/nanoparticles dispersions as protective materials for wood[J]. Applied Physics A, 2016, 122(12): 1-12.
Schaller C, Rogez D. New approaches in wood coating stabilization[J]. Journal of Coatings Technology and Research, 2007, 4(4): 401-409.
高鹤, 梁大鑫, 李坚, 等. 纳米TiO2-ZnO二元负载木材的制备及性质[J]. 高等学校化学学报, 2016, 37(6): 1075-1081.
GAO H, LIANG D X, LI J, et al. Preparation and properties of nano TiO2-ZnO binary collaborative wood[J]. Chemical Journal of Chinese Universities, 2016, 37(6): 1075-1081.
BAUR S I, EASTEAL A J. Improved photoprotection of wood by chemical modification with silanes: NMR and ESR studies[J]. Polymers for Advanced Technologies, 2013, 24(1): 97-103.
OZGENC O, YILDIZ U C. Protection against weathering using micronized copper quat and heat treatment methods on wood for construction of mountain houses[J]. Journal of Materials in Civil Engineering, 2016, 28(6): 04016015.
SANDER C, KOCH G. Effects of acetylation and hydrothermal treatment on lignin as revealed by cellular UV-spectroscopy in Norway spruce (Picea abies [L.] Karst.)[J]. Holzforschung, 2001, 55(2): 193-198.
相关作者
相关机构